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3/-/-/3  

(R22A0405) ELECTROMAGNETIC FIELDS & TRANSMISSION LINES 
 

OBJECTIVES 
The course objectives are: 
The course objectives are:  
1. To introduce the student to the coordinate system and its implementation to 
electromagnetics. 
 2. To elaborate the concept of electromagnetic waves and transmission lines, and their 
practical applications. 
 3. To study the propagation, reflection, and transmission of plane waves in bounded 
unbounded media. 
 4. To present the concepts of transmission lines, and this is a prerequisite course for 
“Antennas”  
 UNIT - I: 
Electrostatics: Review of coordinate system, Coulomb’s Law, Electric Field Intensity - Fields due 
to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric 
Potential, Relations Between E and V, Maxwell’s Equations for Electrostatic Fields, Continuity 
Equation, Relaxation Time, Poisson's and Laplace's Equations Illustrative Problems.  
 
UNIT - II: 
Magnetostatics: Biot - Savart's Law, Ampere's Circuital Law and Applications, Magnetic Flux 
Density, Maxwell’s Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, 
Forces due to Magnetic Fields, Ampere's Force Law. 
 Maxwell's Equations (Time Varying Fields): Faraday's Law, Inconsistency of Ampere's Law and 
Displacement Current Density, Maxwell's Equations in Different Final Forms, Conditions at a 
Boundary Surface: Dielectric - Dielectric, Illustrative Problems.  
 UNIT - III: 
EM Wave Characteristics: Wave Equations for Conducting and Perfect Dielectric Media, 
Uniform Plane Waves - Definition, All Relations Between E & H, Reflection and Refraction of 
Plane Waves - Normal for both perfect Conductor and perfect Dielectrics, Brewster Angle, 
Critical Angle and Total Internal Reflection, Poynting Vector and Poynting Theorem, Illustrative 
Problems.  
 
UNIT - IV: 
Transmission Lines - I: Types, Parameters, Transmission Line Equations, Primary & Secondary 
Constants, Expressions for Characteristics Impedance, Propagation Constant, Phase and Group 
Velocities, Infinite Line Concepts, , Distortion - Condition for Distortion less Transmission and 
Minimum Attenuation, Illustrative Problems.  
  
UNIT - V: 
Transmission Lines - II: SC and OC Lines, Input Impedance Relations, Reflection Coefficient, 
VSWR, Smith Chart - Configuration and Applications, Illustrative Problems.  
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TEXT BOOKS: 

1. Elements of Electromagnetics - Matthew N. O. Sadiku, 4th., Oxford Univ. Press. 
2. Electromagnetic Waves and Radiating Systems - E.C. Jordan and K. G. Balmain, 2nd Ed., 

2000, PHI. 
3. Engineering Electromagnetic - William H. Hay Jr. and John A. Buck, 7thEd., 2006, TMH 

 
REFERENCES BOOKS: 

1. Engineering Electromagnetics - Nathan Ida, 2ndEd., 2005, Springer (India) Pvt. Ltd., New 
Delhi. 

2. Electromagnetic Waves and Transmission Lines-Y Mallikarjuna Reddy, University Press. 
3. Electromagnetic Fields Theory and Transmission Lines - G. Dashibhushana Rao, Wiley 

India, 2013. 
4. Networks, Lines and Fields - John D. Ryder, 2nd Ed., 1999, PHI. 

 
COURSE OUTCOMES: 
 
Upon the successful completion of the course, students will be able to; 
1. Study time varying Maxwell equations and their applications in electromagnetic problems. 
2. Determine the relationship between time varying electric and magnetic field and 

electromotive force.  
3.  Analyze basic transmission line parameters in phasor domain.  
4.  Use Maxwell equation to describe the propagation of electromagnetic waves in vacuum. 
5.  Show how waves propagate in dielectrics and lossy media. 
6. Demonstrate the reflection and refraction of waves at boundaries.  
7. Explain the basic wave guide operation and parameters. 
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UNIT – I 

ELECTROSTATICS 

 

Contents 

 Review of coordinate system 
 Coulomb’s Law 

 Electric Field Intensity - Fields due to Different Charge Distributions 

 Electric Flux Density 
 Gauss Law and Applications 

 Electric Potential 

 Relations Between E and V 

 Maxwell’s Equations for Electrostatic Fields 
 Continuity Equation 

 Relaxation Time 

 Poisson's and Laplace's Equations 
 Illustrative Problems. 
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Introduction: 

Electrostatics, as the name implies, is the study of stationary electric charges. Electrostatics is the 

study of electric charges at rest. It involves the interaction between charged particles and the 

forces and fields they create. Coulomb's law is a fundamental principle in electrostatics that 

describes the force between two-point charges. 
 
Vector Algebra is a part of algebra that deals with the theory of vectors and vector spaces. 
 
Most of the physical quantities are either scalar or vector quantities. 

 

Scalar Quantity: 
 
  Scalar is a number that defines magnitude. Hence a scalar quantity is defined as a 

quantity that has magnitude only. A scalar quantity does not point to any direction i.e. a 

scalar quantity has no directional component. 

For example, when we say, the temperature of the room is 30o C, we don ‘t specifies the 

direction. 

Hence examples of scalar quantities are mass, temperature, volume, speed etc. 

A scalar quantity is represented simply by a letter – A, B, T, V, S. 

 
Vector Quantity: 

 

  A Vector has both a magnitude and a direction. Hence a vector quantity is a 

quantity that has both magnitude and direction. 
 
 Examples of vector quantities are force, displacement, velocity, etc. 

 
 
 
 A vector quantity is represented by a letter with an arrow over it or a bold letter.  

 
 

Unit Vectors: 

 

When a simple vector is divided by its own magnitude, a new vector is created known as 

the unit vector. A unit vector has a magnitude of one.  Hence the name - unit vector. 

A unit vector is always used to describe the direction of respective vector. 

 

 

 
Hence any vector can be written as the product of its magnitude and its unit vector. Unit Vectors 

along the co-ordinate directions are referred to as the base vectors. For example unit vectors 

along X, Y and Z directions are ax, ay and az respectively. 
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Position Vector / Radius Vector (𝑂𝑃̅̅ ̅̅   ): 

 

A Position Vector / Radius vector define the position of a point(P) in space relative to 

the origin(O). Hence Position vector is another way to denote a point in space.  

 

𝑂𝑃̅̅ ̅̅ = 𝑥𝑎̅𝑥 + 𝑦𝑎̅𝑦 + 𝑧𝑎̅𝑧 

 

Displacement Vector 

Displacement Vector is the displacement or the shortest distance from one point to another.  

Vector Multiplication 

When two vectors are multiplied the result is either a scalar or a vector depending on how 

they are multiplied. The two important types of vector multiplication are: 

 Dot Product/Scalar Product (A.B) 

 Cross product (A x B) 

 

1. DOT PRODUCT (A. B): 

  

Dot product of two vectors A and B is defined as: 

𝐴̅. 𝐵̅ = │𝐴̅││𝐵̅│ cos 𝜃𝐴𝐵 

   

Where 𝜃𝐴𝐵 is the angle formed between A and B.  
Also 𝜃𝐴𝐵 ranges from 0 to π i.e. 0 ≤ 𝜃𝐴𝐵 ≤ π 

The result of A.B is a scalar, hence dot product is also known as Scalar Product. 

 

Properties of Dot Product: 

 

1. If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then  

            

                𝐴̅. 𝐵̅= AxBx + AyBy + AzBz 

 

2. 𝐴̅. 𝐵̅= |A| |B|, if cos𝜃𝐴𝐵=1 which means θAB = 00  
 

This shows that A and B are in the same direction or we can also say that A and B are 

parallel to each other. 
 

3. 𝐴̅. 𝐵̅ = - |A| |B|, if cos 𝜃𝐴𝐵=-1 which means 𝜃𝐴𝐵 = 1800. 
 
This shows that A and B are in the opposite direction or we can also say that A and B are 

antiparallel to each other. 
 

4. 𝐴̅. 𝐵̅ = 0, if cos 𝜃𝐴𝐵=0 which means 𝜃𝐴𝐵 = 900. 5.  
This shows that A and B are orthogonal or perpendicular to each other. 

 

5. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have 
 

         𝑎̅𝑥. 𝑎̅𝑥 = 𝑎̅𝑦. 𝑎̅𝑦 = 𝑎̅𝑧. 𝑎̅𝑧 = 1    and   𝑎̅𝑥. 𝑎̅𝑦 = 𝑎̅𝑦. 𝑎̅𝑧 = 𝑎̅𝑧. 𝑎̅𝑥 = 0         
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2. Cross Product (A X B): 

 

Cross Product of two vectors A and B is given as: 

 

𝐴̅𝑋𝐵̅ = │𝐴̅││𝐵̅│ sin 𝜃𝐴𝐵 𝑎̅𝑁 

 

Where 𝜃𝐴𝐵is the angle formed between A and B and 𝑎̅𝑁 is a unit vector normal to both A and B. 

Also θ ranges from 0 to π i.e. 0 ≤ 𝜃𝐴𝐵≤ π 
 

The cross product is an operation between two vectors and the output is also a vector.  

 

Properties of Cross Product: 

 

1.  If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then, 
 
 
 
 
 
 
 
 
 
 

The resultant vector is always normal to both the vector A and B. 
 

 

 2.  𝐴̅𝑋𝐵̅ = 0, if sin 𝜃𝐴𝐵 = 0 which means 𝜃𝐴𝐵 = 00 or 1800;  
This shows that A and B are either parallel or antiparallel to each other. 

 

3. 𝐴̅𝑋𝐵̅ =│𝐴̅││𝐵̅│𝑎̅𝑁, if sin 𝜃𝐴𝐵 = 0 which means 𝜃𝐴𝐵 = 900. 6.  
This shows that A and B are orthogonal or perpendicular to each other. 

 

4. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have  
𝑎̅𝑥𝑋 𝑎̅𝑥 = 𝑎̅𝑦 𝑋 𝑎̅𝑦 = 𝑎̅𝑧𝑋𝑎̅𝑧 = 0 

                                             𝑎̅𝑥𝑋 𝑎̅𝑦 = 𝑎̅𝑧   , 𝑎̅𝑦 𝑋 𝑎̅𝑧 =  𝑎̅𝑥 ,   𝑎̅𝑧𝑋 𝑎̅𝑥 = 𝑎̅𝑦 
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CO-ORDINATE SYSTEMS: 
 
 

Co-Ordinate system is a system of representing points in a space of given dimensions by 

coordinates, such as the Cartesian coordinate system or the system of celestial longitude and 

latitude. 
 

In order to describe the spatial variations of the quantities, appropriate coordinate system is 

required. A point or vector can be represented in a curvilinear coordinate system that may be 

orthogonal or non-orthogonal. An orthogonal system is one in which the coordinates are mutually 

perpendicular to each other. 

 

 The different co-ordinate system available are: 
 

 Cartesian or Rectangular co-ordinate system. (Example: Cube, Cuboid) 
 

 Circular Cylindrical co-ordinate system. (Example: Cylinder) 

 

 Spherical co-ordinate system. (Example: Sphere) 

 

The choice depends on the geometry of the application. 
 

A set of 3 scalar values that define position and a set of unit vectors that define direction form 

a co-ordinate system. The 3 scalar values used to define position are called co-ordinates. All 

coordinates are defined with respect to an arbitrary point called the origin. 
 
 

1. Cartesian Co-ordinate System / Rectangular Co-ordinate System (x,y,z)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A Vector in Cartesian system is represented as (Ax, Ay, Az) Or 

𝐴̅ = 𝐴𝑥𝑎̅𝑥 + 𝐴𝑦𝑎̅𝑦 + 𝐴𝑧𝑎̅𝑧 

Where𝑎̅𝑥 ,𝑎̅𝑦  and 𝑎̅𝑧are the unit vectors in x, y, z direction respectively
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Range of the variables: 

 

It defines the minimum and the maximum value that x, y and z can have in Cartesian system. 

-∞ ≤ x,y,z ≤ ∞ 
 

Differential Displacement / Differential Length (dl): 

 

It is given as  

 

  𝑑𝑙̅ = 𝑑𝑥𝑎̅𝑥 + 𝑑𝑦𝑎̅𝑦 + 𝑑𝑧𝑎̅𝑧 
 

Differential length for a line parallel to x, y and z axis are respectively given as: 

 

dl = 𝑑𝑥𝑎̅𝑥---(For a line parallel to x-axis). 
 

dl = 𝑑𝑦𝑎̅𝑦 ---(For a line Parallel to y-axis). 

dl = 𝑑𝑧𝑎̅𝑧 ---(For a line parallel to z-axis). 
 

If there is a wire of length L in z-axis, then the differential length is given as dl = dz az. 

Similarly, if the wire is in y-axis, then the differential length is given as dl = dy ay. 
 

Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface.  

The differential surface (area element) is defined as  
𝑑𝑠̅̅ ̅ = 𝑑𝑠𝑎̅𝑁  

Where𝑎̅𝑁, is the unit vector perpendicular to the surface. 

 

 

For the 1st figure,  

𝑑𝑠̅̅ ̅ = 𝑑𝑦𝑑𝑧𝑎̅𝑥 

 

2nd figure,  
𝑑𝑠̅̅ ̅ = 𝑑𝑥𝑑𝑧𝑎̅𝑦 

 

3rd figure,  

𝑑𝑠̅̅ ̅ = 𝑑𝑥𝑑𝑦𝑎̅𝑧 
 

Differential Volume: 
 

The differential volume element (dv) can be expressed in terms of the triple product. 

                                                                     𝑑𝑣 = 𝑑𝑥𝑑𝑦𝑑𝑧 
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2. Circular Cylindrical Co-ordinate System 
 
 

A Vector in Cylindrical system is represented as (Ar, AǾ,  Az)    or 
 

𝐴̅ = 𝐴𝑟𝑎̅𝑟 + 𝐴∅𝑎̅∅ + 𝐴𝑧𝑎̅𝑧 

 

Where𝑎̅𝑟, 𝑎̅∅ and 𝑎̅𝑧 are the unit vectors in r, Φ and z directions respectively. 
 

The physical significance of each parameter of cylindrical coordinates: 
 

1. The value r indicates the distance of the point from the z-axis. It is the radius of the 

cylinder. 

2. The value Φ, also called the azimuthal angle, indicates the rotation angle around the z-

axis. It is basically measured from the x axis in the x-y plane. It is measured anti 

clockwise. 

3. The value z indicates the distance of the point from z-axis. It is the same as in the 

Cartesian system. In short, it is the height of the cylinder. 

 

Range of the variables: 

 

It defines the minimum and the maximum values of r, Φ and z. 

 

0 ≤ r ≤ ∞  
0 ≤ Φ ≤ 2π 

-∞ ≤ z ≤ ∞ 
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Figure shows Point P and Unit vectors in Cylindrical Co-ordinate System. 

 

Differential Displacement / Differential Length (dl): 

 

It is given as  

 

𝑑𝑙̅ = 𝑑𝑟𝑎̅𝑟 + 𝑟𝑑𝜑𝑎̅𝜑 + 𝑑𝑧𝑎̅𝑧 

 

Differential length for a line parallel to r, Φ and z axis are respectively given as: 

 

dl = 𝑑𝑟𝑎̅𝑟---(For a line parallel to r-direction). 
 

dl = 𝑟𝑑𝜑𝑎̅𝜑 ---(For a line Parallel to Φ-direction). 

dl = 𝑑𝑧𝑎̅𝑧 ---(For a line parallel to z-axis). 
 
 

Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface.  

The differential surface (area element) is defined as  
𝑑𝑠̅̅ ̅ = 𝑑𝑠𝑎̅𝑁  

Where𝑎̅𝑁, is the unit vector perpendicular to the surface. 

 

This surface describes a circular disc. Always remember- To define a circular disk we 

need two parameter one distance measure and one angular measure. An angular parameter 

will always give a curved line or an arc. 
 

In this case dΦ is measured in terms of change in arc. Arc is given as: 
 
Arc= radius * angle 

𝑑𝑠̅̅ ̅ = 𝑟𝑑𝑟𝑑𝜑𝑎̅𝑧 

𝑑𝑠̅̅ ̅ = 𝑑𝑟𝑑𝑧𝑎̅𝜑 

𝑑𝑠̅̅ ̅ = 𝑟𝑑𝑟𝑑𝜑𝑎̅𝑟  

 

 

Differential Volume: 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣 = 𝑟𝑑𝑟𝑑𝜑𝑑𝑧 
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3. Spherical coordinate System: 
 

Spherical coordinates consist of one scalar value (r), with units of distance, while the other two 

scalar values (θ, Φ) have angular units (degrees or radians). 
 

A Vector in Spherical System is represented as (Ar ,AӨ, AΦ)  or  

𝐴̅ = 𝐴𝑟𝑎̅𝑟 + 𝐴𝜃 𝑎̅𝜃 + 𝐴𝜑𝑎̅𝜑 

Where𝑎̅𝑟,𝑎̅𝜃  and 𝑎̅𝜑 are the unit vectors in r, θ and Φ direction respectively. 

 

The physical significance of each parameter of spherical coordinates: 

 

1. The value r expresses the distance of the point from origin (i.e. similar to 

altitude). It is the radius of the sphere. 

2. The angle θ is the angle formed with the z- axis (i.e. similar to latitude). It is also 

called the co-latitude angle. It is measured clockwise. 

3. The angle Φ, also called the azimuthal angle, indicates the rotation angle around the z-

axis (i.e. similar to longitude). It is basically measured from the x axis in the x-y plane. 

It is measured counter-clockwise. 
 

Range of the variables: 

 

It defines the minimum and the maximum value that r, θ and υ can have in spherical co-ordinate 

system. 

 

 0 ≤ r ≤ ∞  
    0 ≤ θ ≤ π 

    0 ≤ Φ≤ 2π 
 

 

Differential length: 

It is given as 

𝑑𝑙̅ = 𝑑𝑟𝑎̅𝑟 + 𝑟𝑑𝜃𝑎̅𝜃 + 𝑟 sin 𝜃 𝑑𝜑𝑎̅𝜑 

 

Differential length for a line parallel to r, θ and Φ axis are respectively given as: 
 

 dl = 𝑑𝑟𝑎̅𝑟--(For a line parallel to r axis) 

 

dl = 𝑟𝑑𝜃𝑎̅𝜃---( For a line parallel to θ direction) 

 

 dl = 𝑟 sin 𝜃 𝑑𝜑𝑎̅𝜑 --(For a line parallel to Φ direction) 

 

Differential Normal Surface (ds): Differential surface is basically a cross product between two 

parameters of the surface.  

The differential surface (area element) is defined as  

𝑑𝑠̅̅ ̅ = 𝑑𝑠𝑎̅𝑁  

Where𝑎̅𝑁, is the unit vector perpendicular to the surface. 

 

𝑑𝑠̅̅ ̅ = 𝑟𝑑𝑟𝑑𝜃𝑎̅𝜑 

𝑑𝑠̅̅ ̅ = 𝑟2 sin 𝜃 𝑑𝜑𝑑𝜃𝑎̅𝑟 
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𝑑𝑠̅̅ ̅ = 𝑟 sin 𝜃 𝑑𝑟𝑑𝜑𝑎̅𝜃 

 

Differential Volume: 
 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣 = 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜑𝑑𝜃 

 

         
Coordinate transformations: 
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Del operator: 

 

Del is a vector differential operator. The del operator will be used in for differential 
operations throughout any course on field theory. The following equation is the del 
operator for different coordinate systems. 
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Gradient of a Scalar: 

 

• The gradient of a scalar field, V, is a vector that represents both the magnitude and the 

direction of the maximum space rate of increase of V. 

• To help visualize this concept, take for example a topographical map. Lines on the map 

represent equal magnitudes of the scalar field. The gradient vector crosses map at the 

location where the lines packed into the most dense space and perpendicular (or normal) 

to them. The orientation (up or down) of the gradient vector is such that the field is 

increased in magnitude along that direction. 

 
-Fundamental properties of the gradient of a scalar field 

 The magnitude of gradient equals the maximum rate of change in V per unit distance 

 Gradient points in the direction of the maximum rate of change in V 

 Gradient at any point is perpendicular to the constant V surface that passes through that 

point 

 The projection of the gradient in the direction of the unit vector a, is 

 and is called the directional derivative of V along a. This is the rate of change of 

V in the direction of a. 
 If A is the gradient of V, then V is said to be the scalar potential of A. 

 
 
Divergence of a Vector: 

The divergence of a vector, A, at any given point P is the outward flux per unit 

volume as volume shrinks about P. 

 
The divergence of a vector field is a scalar field. The divergence is generally denoted by “div”. 

The divergence of a vector field can be calculated by taking the scalar product of 

the vector operator applied to the vector field 

     

 

 

Rectangular 

Coordinate System 

Cylindrical 

Coordinate System 

https://byjus.com/maths/vectors/
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Curl of a Vector: 

The curl of a vector, A is an axial vector whose magnitude is the maximum circulation 

of A per unit area as the area tends to zero and whose direction is the normal direction of 

the area when the area is oriented to make the circulation maximum. 
-Curl of a vector in each of the three primary coordinate systems are, 

 
Divergence Theorem: 

• The divergence theorem states that the total outward flux of a vector field, A, through 

the closed surface, S, is the same as the volume integral of the divergence of A. 

• This theorem is easily shown from the equation for the divergence of a vector field. 

 
       
 
 
 
 
 
 
 
 
Stokes Theorem: 

• Stokes theorem states that the circulation of a vector field A, around a closed path, L is 

equal to the surface integral of the curl of A over the open surface S bounded by L. This 

theorem has been proven to hold as long as A and the curl of A are continuous along the 

closed surface S of a closed path L 

Spherical Coordinate 
System 
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• This theorem is easily shown from the equation for the curl of a vector field. 

 
 
Types of Charge Distributions: 
 
Point charge: When size of a body is much smaller than the distance under consideration, then 
the size of the body may be ignored and the charged body is called point charge. 
 
 

 
 

The continuous load distribution system is a system in which the charge is uniformly distributed 

over the conductor. For a continuous charging device, the infinite number of charges is closely 

packed and there is no space between them. Unlike the discrete charging system, the continuous 

load distribution in the conductor is uninterrupted and continuous. There are 3 types of 

continuous charge distribution system - 

 Linear Charge Distribution 

 Surface Charge Distribution 

 Volume Charge Distribution 
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Charge distributions. (a) Point charge; (b) Line charge; (c) Surface charge; (d) Volume 

charge. 

 

Coulomb's Law  

Coulomb's Law states that the force between two-point charges Q1and Q2 is directly 

proportional to the product of the charges and inversely proportional to the square of the distance 

between them.  
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A point charge is a charge that occupies a region of space which is negligibly small compared to 

the distance between the point charge and any other object. 

Point charge is a hypothetical charge located at a single point in space. It is an idealized model of 

a particle having an electric charge. Mathematically, , 

            

where k is the proportionality constant.  

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters. 

Force F is in   Newtons (N)  and  ,   is called the permittivity of free space.  

 

(We are assuming the charges are in free space. If the charges are any other dielectric medium, 

we will use   instead where   is called the relative permittivity or the dielectric 

constant of the medium). 

Therefore   

....................... (1) 

As shown in the Figure 1 let the position vectors of the point charges Q1and Q2 are given by  

and  . Let  represent the force on Q1 due to charge Q2.     

 

                     

                      Fig 1: Coulomb's Law 

The charges are separated by a distance of . We define the unit vectors as  

and    can be defined as          
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.  

Similarly the force on Q1 due to charge Q2 can be calculated and if represents this force then 

we can write  

When we have a number of point charges, to determine the force on a particular charge due to all 

other charges, we apply principle of superposition. If we have N number of charges 

Q1,Q2,.........QN located respectively at the points represented by the position vectors , ,......  

, the force experienced by a charge Q located at is given by,  

  

Field: 

 

A field is a function that specifies a particular physical quantity everywhere in a region. 

Depending upon the nature of the quantity under consideration, the field may be a vector  or a 

scalar field. Example of scalar field is the electrostatic potential in a region while electric or 

magnetic fields at any point is the example of vector field. 
Static Electric Fields: 

Electrostatics can be defined as the study of electric charges at rest. Electric fields have their 

sources in electric charges. The fundamental & experimentally proved laws of electrostatics 

are Coulomb’s law & Gauss’s theorem. 
 

Electric Field: 

Electric field due to a charge is the space around the unit charge in which it experiences a force. 

Electric field intensity or the electric field strength at a point is defined as the force per unit 

charge. 
 

Mathematically, 
 

E = F / Q 
 

OR 
 

F = E Q 

The force on charge Q is the product of a charge (which is a scalar) and the value of the 

electric field (which is a vector) at the point where the charge is located. That is  

or,  
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The electric field intensity E at a point r (observation point) due a point charge Q located at 

(source point) is given by:  

 

For a collection of N point charges Q1 ,Q2 ,.........QN located at , ,...... , the electric field 

intensity at point is obtained as  

 

The expression (6) can be modified suitably to compute the electric filed due to a continuous 

distribution of charges.  

In figure 2 we consider a continuous volume distribution of charge (t) in the region denoted as 

the source region.  

For an elementary charge , i.e. considering this charge as point charge, we can 

write the field expression as:  

 

 

 

Fig 2: Continuous Volume Distribution of Charge 

When this expression is integrated over the source region, we get the electric field at the point P 

due to this distribution of charges. Thus the expression for the electric field at P can be written 

as:  
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    ...............volume charge........................... 

Similar technique can be adopted when the charge distribution is in the form of a line charge 

density or a surface charge density.  

.....................line charge ................ 

..................surface charge...................... 

 

Electric Lines of Forces: 
 

Electric line of force is a pictorial representation of the electric field. 
 
Electric line of force (also called Electric Flux lines or Streamlines) is an imaginary straight or 

curved path along which a unit positive charge tends to move in an electric field. 
 

 

Properties Of Electric Lines of Force: 
 

1. Lines of force start from positive charge and terminate either at negative charge or move to 

infinity. 

2. Similarly, lines of force due to a negative charge are assumed to start at infinity and 

terminate at the negative charge. 
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3. The number of lines per unit area, through a plane at right angles to the lines, is 

proportional to the magnitude of E. This means that, where the lines of force are close 

together, E is large and where they are far apart E is small. 

 

4. If there is no charge in a volume, then each field line which enters it must also leave it.  

 
5. If there is a positive charge in a volume then more field lines leave it than enter it.  

 
6. If there is a negative charge in a volume then more field lines enter it than leave it. 

 

7. Hence, we say Positive charges are sources and Negative charges are sinks of the field. 

 

8. These lines are independent on medium. 

 

9. Lines of force never intersect i.e. they do not cross each other. 

 

10. Tangent to a line of force at any point gives the direction of the electric field E at that 

point. 

 

Electric flux density: 

 

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field at 

a particular point. The electric field depends on the material media in which the field is being 

considered. The flux density vector is defined to be independent of the material media (as we'll 

see that it relates to the charge that is producing it). For a linear isotropic medium under 

consideration; the flux density vector is defined as:   

Electric flux density is defined as the amount of flux passes through unit surface area in the 

space imagined at right angle to the direction of electric field. The expression of electric field at a 

point is given by 

 

Where, Q is the charge of the body by which the field is created. R is the distance of the point 

from the center of the charged body. 

https://www.electrical4u.com/what-is-electric-field/
https://www.electrical4u.com/what-is-electric-field/
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We define the electric flux as  

 

Solved problems: 
 
Problem1: 

 

 
 

Problem-2 

 
 

Problem-3 

 
 

Problem-4 
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Problem-5 

 
 

 

 

Problem-6 

 
Problem-8 
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Gauss's Law: 

 Gauss's law is one of the fundamental laws of electromagnetism and it states that the total 

electric flux through a closed surface is equal to the total charge enclosed by the surface.  

 

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric 

constant. The flux density at a distance r on a surface enclosing the charge is given by  

 

If we consider an elementary area ds, the amount of flux passing through the elementary area is 

given by  

 

But , is the elementary solid angle subtended by the area at the location of Q. 

Therefore, we can write  

For a closed surface enclosing the charge, we can write  

which can seen to be same as what we have stated in the definition of Gauss's Law.  
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This equation is called the 1st Maxwell's equation of electrostatics. 

Application of Gauss's Law: 

Gauss's law is particularly useful in computing or where the charge distribution has some 

symmetry. We shall illustrate the application of Gauss's Law with some examples.  

1.    due to an infinite line charge  

As the first example of illustration of use of Gauss's law, let consider the problem of 

determination of the electric field produced by an infinite line charge of density LC/m. Let us 

consider a line charge positioned along the z-axis as shown in Fig. 4(a) (next slide). Since the 

line charge is assumed to be infinitely long, the electric field will be of the form as shown in Fig. 

4(b) (next slide).  

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can 

write,  

 

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the 

electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we 

can write,  
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Fig 4: Infinite Line Charge 

 

2.  Infinite Sheet of Charge  

As a second example of application of Gauss's theorem, we consider an infinite charged sheet 

covering the x-z plane as shown in figure 5. Assuming a surface charge density of for the 

infinite surface charge, if we consider a cylindrical volume having sides placed symmetrically 

as shown in figure 5, we can write:  
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Fig 5: Infinite Sheet of Charge 

 

It may be noted that the electric field strength is independent of distance. This is true for the 

infinite plane of charge; electric lines of force on either side of the charge will be perpendicular 

to the sheet and extend to infinity as parallel lines. As number of lines of force per unit area gives 

the strength of the field, the field becomes independent of distance. For a finite charge sheet, the 

field will be a function of distance. 

 

3.  Uniformly Charged Sphere  

Let us consider a sphere of radius r0 having a uniform volume charge density of rv C/m3. To 

determine   everywhere, inside and outside the sphere, we construct Gaussian surfaces of 

radius r < r0 and r > r0 as shown in Fig. 6 (a) and Fig. 6(b).  

For the region   ; the total enclosed charge will be  

 

  

 

       Fig 6: Uniformly Charged Sphere 
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By applying Gauss's theorem,  

 

Therefore 

 

For the region ; the total enclosed charge will be  

                                

By applying Gauss's theorem,  

 

 
Electric Potential / Electrostatic Potential (V): 
 

If a charge is placed in the vicinity of another charge (or in the field of another charge), it 

experiences a force. If a field being acted on by a force is moved from one point to another, then 

work is either said to be done on the system or by the system. 

 

Say a point charge Q is moved from point A to point B in an electric field E, then the 

work done in moving the point charge is given as: 
 

WA→B = - ∫AB (F . dl) = - Q ∫AB(E . dl) 

 

where the – ve sign indicates that the work is done on the system by an external agent.  
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The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 

 

VAB = WA→B / Q 
 

 - ∫AB(E . dl) 

 
 - ∫InitialFinal (E . dl) 
 

If the potential difference is positive, there is a gain in potential energy in the movement, 

external agent performs the work against the field. If the sign of the potential difference is 

negative, work is done by the field. 

 
The electrostatic field is conservative i.e. the value of the line integral depends only on 

end points and is independent of the path taken. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Since the electrostatic field is conservative, the electric potential can also be written as:  
 

 

𝑉𝐴𝐵 = − ∫ 𝐸̅

𝐵

𝐴

. 𝑑𝑙̅ 

 

𝑉𝐴𝐵 = − ∫ 𝐸̅

𝑝0

𝐴

. 𝑑𝑙̅ − ∫ 𝐸̅

𝐵

𝑝0

. 𝑑𝑙̅  

𝑉𝐴𝐵 = − ∫ 𝐸̅
𝐵

𝑝0

. 𝑑𝑙̅ +  ∫ 𝐸̅
𝐴

𝑝0

. 𝑑𝑙̅ 

 

𝑉𝐴𝐵 = 𝑉𝐵 − 𝑉𝐴
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Thus, the potential difference between two points in an electrostatic field is a scalar field that 

is defined at every point in space and is independent of the path taken. 

 

- The work done in moving a point charge from point A to point B can be written as: 
 

WA→B = - Q [VB – VA] =  −𝑄 ∫ 𝐸̅
𝐵

𝐴
. 𝑑𝑙̅ 

 
- Consider a point charge Q at origin O. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now if a unit test charge is moved from point A to Point B, then the potential difference between 

them is given as: 
 
 
 
 
 
 
 
 
 
 
 
 

 

- Electrostatic potential or Scalar Electric potential (V) at any point P is given by: 
 

 

𝑉 = − ∫ 𝐸̅
𝑃

𝑃0

. 𝑑𝑙̅ 

 
The reference point Po is where the potential is zero (analogues to ground in a circuit).  

The reference is often taken to be at infinity so that the potential of a point in space is defined as 
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Basically, potential is considered to be zero at infinity. Thus potential at any point ( rB = r) due 

to a point charge Q can be written as the amount of work done in bringing a unit positive 

charge from infinity to that point (i.e. rA → ∞) 
 

 

Electric potential (V) at point r due to a point charge Q located at a point with position vector   
r1 is given as: 
 
 
 
 
 
                       
 
Similarly for N point charges Q1, Q2 ….Qn located at points with position vectors r1,  
r2, r3…..rn, theelectric potential (V) at point r is given as: 

 

 

 

 

 

 

The charge element dQ and the total charge due to different charge distribution is given as:  

 

dQ = ρldl → Q = ∫L (ρldl) → (Line Charge) 

 

dQ = ρsds → Q = ∫S (ρsds) → (Surface Charge) 

 

dQ = ρvdv → Q = ∫V (ρvdv) → (Volume Charge)  
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Second Maxwell’s Equation of Electrostatics: 
 

The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 
 

VAB = VB – VA 

 

Similarly, 
 

VBA = VA – VB 

 

Hence it‘s clear that potential difference is independent of the path taken. Therefore 
 

VAB  = - VBA 

 

 

VAB+ VBA = 0 
 

 

 ∫AB (E . dl) + [ - ∫BA (E . dl) ] = 0 
 
 
 
 
 
 
 
 
The above equation is called the second Maxwell‘s Equation of Electrostatics in integral form..  

The above equation shows that the line integral of Electric field intensity (E) along a closed path 

is equal to zero. 

In simple words―No work is done in moving a charge along a closed path in an electrostatic 

field. 
 

Applying Stokes‘Theorem to the above Equation, we have:  
 
 
 
 
 
 
 
 
 

If the Curl of any vector field is equal to zero, then such a vector field is called an Irrotational or 

Conservative Field. Hence an electrostatic field is also called a conservative field. 
The above equation is called the second Maxwell ‘s Equation of Electrostatics in differential 
form. 
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Relationship Between Electric Field Intensity (E) and Electric Potential (V): 
 
 Since Electric potential is a scalar quantity, hence dV (as a function of x, y and z variables) can 

be written as:  
 
 
 
 
 
 
 
 
 
 
 
 

Hence the Electric field intensity (E) is the negative gradient of Electric potential (V). 

The negative sign shows that E is directed from higher to lower values of V i.e. E is opposite   to 

the direction in which V increases. 
 

  
Properties of Materials and Steady Electric Current: 
 

Electric field can not only exist in free space and vacuum but also in any material medium. When 

an electric field is applied to the material, the material will modify the electric field either by 

strengthening it or weakening it, depending on what kind of material it is. 
  

Materials are classified into 3 groups based on conductivity / electrical property: 

 

 Conductors (Metals like Copper, Aluminum, etc.) have high conductivity (σ >> 1).  
 Insulators / Dielectric (Vacuum, Glass, Rubber, etc.) have low conductivity (σ << 1). 

 Semiconductors (Silicon, Germanium, etc.) have intermediate conductivity. 
 
Conductivity (σ) is a measure of the ability of the material to conduct electricity. It is 

the reciprocal of resistivity (ρ). Units of conductivity are Siemens/meter and mho. 

 

The basic difference between a conductor and an insulator lies in the amount of free electrons 

available for conduction of current. Conductors have a large amount of free electrons whereas 

insulators have only a few number of electrons for conduction of current. Most of the conductors 

obey ohm‘s law. Such conductors are also called ohmic conductors. 
 
  Due to the movement of free charges, several types of electric current can be caused. 
 
The different types of electric current are: 
 

 Conduction Current.  
 Convection Current. 

 Displacement Current. 
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Electric current: 

 

Electric current (I) defines the rate at which the net charge passes through a wire of 

cross-sectional surface area S. 
 

Mathematically, 

 

If a net charge ΔQ moves across surface S in some small amount of time Δt, electric current(I) 
 
is defined as:  
 
 
 
 
 
 
 

How fast or how speed the charges will move depends on the nature of the material medium. 
 

Current density: 

 

 Current density (J) is defined as current ΔI flowing through surface ΔS. 

 

Imagine surface area ΔS inside a conductor at right angles to the flow of current. As the 

area approaches zero, the current density at a point is defined as:  
 
 
 
 
 
 
 

 

The above equation is applicable only when current density (J) is normal to the surface. 
 

In case if current density(J) is not perpendicular to the surface, consider a small area ds of 

the conductor at an angle θ to the flow of current as shown: 
 
 
 
 
 
 
 
 
 
 
 

 

In this case current flowing through the area is given as: 

 

dI = J dS cosθ = J . dS       and       𝐼 = ∫ 𝐽 ̅ 

𝑆
. 𝑑𝑠̅̅ ̅  
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Where angle θ is the angle between the normal to the area and direction of the current. 

 From the above equation it‘s clear that electric current is a scalar quantity. 
 

 

CONTINUITY EQUATION: 
 

The continuity equation is derived from two of Maxwell's equations. It states that the 

divergence of the current density is equal to the negative rate of change of the charge density,  
 
 
 
 

 

Derivation 
 

One of Maxwell's equations, Ampère's law, states that  
 
 
 
 

 

Taking the divergence of both sides results in  
 
 
 
 
 

but the divergence of a curl is zero, so that  
 
 
 
 
 

Another one of Maxwell's equations, Gauss's law, states that  
 
 

 

Substitute this into equation (1) to obtain  
 
 
 
 
 

which is the continuity equation. 
 

Relaxation Time 
Relaxation time can be defined as the time taken by electron to attain an average velocity which 

is 1/e times its value. 

The different physics interfaces involving only the scalar electric potential can be interpreted in 

terms of the charge relaxation process. The fundamental equations involved are Ohm’s law for 

the conduction current density 

 
the equation of continuity 

 
and Gauss’ law 
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By combining these, one can deduce the following differential equation for the space charge 

density in a homogeneous medium 

 
This equation has the solution 

 
were 

 
is called the charge relaxation time. 

 

LAPLACE'S AND POISSON'S EQUATIONS: 
 
 

A useful approach to the calculation of electric potentials is to relate that potential to the 

charge density which gives rise to it. The electric field is related to the charge density by the 

divergence relationship  
 
 
 
 
 
 

 

and the electric field is related to the electric potential by a gradient relationship  
 
 
 
 

Therefore the potential is related to the charge density by Poisson's equation  
 
 
 
 
 
 

In a charge-free region of space, this becomes LaPlace's equation  
 
 
 

 

This mathematical operation, the divergence of the gradient of a function, is called the Laplacian. 

Expressing the Laplacian in different coordinate systems to take advantage of the symmetry of a 

charge distribution helps in the solution for the electric potential V. For example, if the charge 

distribution has spherical symmetry, you use the Laplacian in spherical polar coordinates. 
 

Since the potential is a scalar function, this approach has advantages over trying to calculate the 

electric field directly. Once the potential has been calculated, the electric field can be computed 

by taking the gradient of the potential. 
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Solved problems: 
 
Problem1: 

 

 
 

Problem-2 

 
 

Problem-3 

 
 

Problem-4 
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UNIT-II 

MAGNETOSTATICS 

Contents: 

Magnetostatics:  

 Biot - Savart's Law 
 Ampere's Circuital Law and Applications 

 Magnetic Flux Density 

 Maxwell’s Equations for Magnetostatic Fields 

 Magnetic Scalar and Vector Potentials 
 Forces due to Magnetic Fields 

 Ampere's Force Law 

Maxwell's Equations (Time Varying Fields): 

 Faraday's Law 

 Inconsistency of Ampere's Law and 

 Displacement Current Density 

 Maxwell's Equations in Different Final Forms 
 Conditions at a Boundary Surface: Dielectric – Dielectric 

 Illustrative Problems.  
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Introduction: 
 
 

The source of steady magnetic field may be a permanent magnet, a direct current or an electric 

field changing with time. In this chapter we shall mainly consider the magnetic field produced by 

a direct current. The magnetic field produced due to time varying electric field will be discussed 

later. 

 There are two major laws governing the magneto static fields are: 
 

 Biot-Savart Law 
 

 Ampere's Law 
 

Usually, the magnetic field intensity is represented by the vector . It is customary to represent the 

direction of the magnetic field intensity (or current) by a small circle with a dot or cross sign 

depending on whether the field (or current) is out of or into the page as shown in Fig. 2.1. 
 
 
 
 
 
 
 
 
 

 

(or l ) out of the page   (or l ) into the page 
 

Fig. Representation of magnetic field (or current) 
 

 

Biot- Savart’s Law: 
 

This law relates the magnetic field intensity dH produced at a point due to a differential 

current element as shown in Fig.  
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The magnetic field intensity at P can be written as, 

 

 
 

 

 
 

where is the distance of the current element from the point P. 

The value of the constant of proportionality 'K' depends upon a property called permeability of 

the medium around the conductor. Permeability is represented by symbol 'm' and the constant 'K' 

is expressed in terms of 'm' as 
 
 
 
 
 
 
 

 

Magnetic field 'B' is a vector and unless we give the direction of 'dB', its description is not 

complete. Its direction is found to be perpendicular to the plane of 'r' and 'dl'. 

 

If we assign the direction of the current 'I' to the length element 'dl', the vector product dl x r has 

magnitude r dl sinq and direction perpendicular to 'r' and 'dl'. 

 

Hence, Biot–Savart law can be stated in vector form to give both the magnitude as well as 

direction of magnetic field due to a current element as 
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Similar to different charge distributions, we can have different current distribution such as 

line current, surface current and volume current. These different types of current densities are 

shown in Fig. 2.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Line Current Surface Current Volume Current 

 

Fig. 2.3: Different types of current distributions 
 

By denoting the surface current density as K (in amp/m) and volume current density as J 

(in amp/m2) we can write: 
 

 
 

( It may be noted that ) 
 

 

Employing Biot -Savart Law, we can now express the magnetic field intensity H. In terms of 

these current distributions as  

 

 

 

 

............................. for line current............................    
 

 
 

........................ for surface current .................... 
 
 
 

 

....................... for volume current......................  
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𝑯̅ Due to infinitely long straight conductor: 
 

We consider a finite length of a conductor carrying a current placed along z-axis as shown in 

the Fig 2.4. We determine the magnetic field at point P due to this current carrying conductor.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2.4: Field at a point P due to a finite length current carrying conductor 

 

With reference to Fig. 2.4, we find that 
 
 

 

 

Applying Biot - Savart's law for the current element  We can write,  
 
 

    

Substituting we can write,  
 

 

 

We find that, for an infinitely long conductor carrying a current I , and  

Therefore  
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Ampere's Circuital Law: 
 

Ampere's circuital law states that the line integral of the magnetic field (circulation of H ) 

around a closed path is the net current enclosed by this path. Mathematically, 

 

  
 

The total current I enc can be written as, 

 

   
By applying Stoke's theorem, we can write  

 
 
 
 
 
 

 

  
 

Which is the Ampere's circuital law in the point form and Maxwell’s equation for magneto static 

fields. 
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Applications of Ampere's circuital law: 

 
1. It is used to find  𝐻 and   𝐵̅ due to any type of current distribution. 

2. If  𝐻 or  𝐵̅ is known then it is also used to find current enclosed by any closed path.  

 

We illustrate the application of Ampere's Law with some examples. 

 

𝑯̅ Due to infinitely long straight conductor :( using Ampere's circuital law) 
 

We compute magnetic field due to an infinitely long thin current carrying conductor as 

shown in Fig. 2.5. Using Ampere's Law, we consider the close path to be a circle of 

radius as shown in the Fig. 4.5. 

 

If we consider a small current element , is perpendicular to the plane 

containing both and . Therefore only component of that will be present is  

,i.e., . 
 

By applying Ampere's law we can write, 
 
 
 
 

 

 
              

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. Magnetic field due to an infinite thin current carrying conductor 
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𝑯̅ Due to infinitely long coaxial conductor :( using Ampere's circuital law) 
 

We consider the cross section of an infinitely long coaxial conductor, the inner conductor 

carrying a current I and outer conductor carrying current - I as shown in figure 2.6. We 

compute the magnetic field as a function of as follows: 

 

In the region   
 
 

 

 

  

 

In the region  
 
 

 

  
 
 
 
 
 

 

 
 
 
 

 

Fig. 2.6: Coaxial conductor carrying equal and opposite currents in the region 

 

 
 
 
 
 
 

In the region  
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Magnetic Flux Density:  

In simple matter, the magnetic flux density   related to the magnetic field intensity   as 

 where   called the permeability. In particular when we consider the free space 

where  H/m is the permeability of the free space. Magnetic flux density is 

measured in terms of Wb/m 2 .  

The magnetic flux density through a surface is given by:  

    Wb       

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux 

passing through the surface is equal to the charge enclosed by the surface. In case of magnetic 

field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as 

N-S). For example, if we desire to have an isolated magnetic pole by dividing the magnetic bar 

successively into two, we end up with pieces each having north (N) and south (S) pole as shown 

in Fig. 6 (a). This process could be continued until the magnets are of atomic dimensions; still 

we will have N-S pair occurring together. This means that the magnetic poles cannot be isolated.    

   

 Fig. 6: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying   

                                                                              conductor                         

Maxwell’s 2nd equation for static magnetic fields: 

Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 6 

(b), we find that these lines are closed lines, that is, if we consider a closed surface, the number 

of flux lines that would leave the surface would be same as the number of flux lines that would 

enter the surface.  

From our discussions above, it is evident that for magnetic field,  
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 ......................................in integral form 

which is the Gauss's law for the magnetic field.  

By applying divergence theorem, we can write:  

 

   

Hence,                                         ................................... in point/differential form   

which is the Gauss's law for the magnetic field in point form. 

 

Magnetic Scalar and Vector Potentials:  

In studying electric field problems, we introduced the concept of electric potential that simplified 

the computation of electric fields for certain types of problems. In the same manner let us relate 

the magnetic field intensity to a scalar magnetic potential and write:  

 

From Ampere's law , we know that  

 

Therefore,   

But using vector identity, we find that   is valid only where  .  

Thus the scalar magnetic potential is defined only in the region where  . Moreover, Vm in 

general is not a single valued function of position.  This point can be illustrated as follows. Let us 

consider the cross section of a coaxial line as shown in fig 7.  

In the region  ,    and  
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 Fig. 7: Cross Section of a Coaxial Line 

If Vm is the magnetic potential then, 

  

If we set Vm = 0 at  then c=0 and  

                             

We observe that as we make a complete lap around the current carrying conductor , we reach  

again but Vm this time becomes  

 

We observe that value of Vm keeps changing as we complete additional laps to pass through the 

same point. We introduced Vm analogous to electostatic potential V. 

 But for static electric fields,  

 and  

 whereas for steady magnetic field   wherever   but   even if  

along the path of integration. 

We now introduce the vector magnetic potential which can be used in regions where 

current density may be zero or nonzero and the same can be easily extended to time varying 

cases. The use of vector magnetic potential provides elegant ways of solving EM field problems.  

Since and we have the vector identity that for any vector ,   , we 

can write  .  

Here, the vector field   is  called the vector magnetic potential. Its SI unit is Wb/m. 

Thus if can find  of a given current distribution,   can be found from   through a curl 

operation. We have introduced the vector function   and  related its curl to . A vector 

function is defined fully in terms of its curl as well as divergence. The choice of  is made as 

follows. 
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By using vector identity,  

     

Great deal of simplification can be achieved if we choose .  

Putting  , we get  which is vector poisson equation.  

In Cartesian coordinates, the above equation can be written in terms of the components as  

 . 

 

    

The form of all the above equation is same as that of  

   

for which the solution is 

 

  

In case of time varying fields we shall see that  , which is known as Lorentz condition, V being 

the electric potential. Here we are dealing with static magnetic field, so .  

By comparison, we can write the solution for Ax as  

    

Computing similar solutions for other two components of the vector potential, the vector 

potential can be written as 

 

This equation enables us to find the vector potential at a given point because of a volume current 

density .  

Similarly for line or surface current density we can write                                        
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.   

The magnetic flux  through a given area S is given by         

                                               Substituting         

                                             

Vector potential thus have the physical significance that its integral around any closed path is 

equal to the magnetic flux passing through that path. 
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Forces due to magnetic fields 

There are at least three ways in which force due to magnetic fields can be 

experienced. The force can be (a) due to a moving charged particle in a (B) field, 

(b) on a current element in an external (B ) field, or (c )  between two current elements. 

Force on a Charged Particle 
 

The electric force (Fe) on a moving electric charge (Q) in an electric field is given by 

Coulomb’s experimental law and is related to the electric field intensity (E) as 

Fe = Q E--------(1) 

This shows that if Q is positive, Fe and E have the same direction. 

A magnetic field can exert force only on a moving charge. From experiments, it is found that 

the magnetic force (Fm) experienced by a charge (Q) moving with a velocity (u) in a magnetic 

field ( B) is 

 

Fm = Q u × B-------(2) 

This clearly shows that (Fm) is perpendicular to both (u) and (B). 

From eqs. (1) and (2), a comparison between the electric force Fe and the magnetic force Fm 

can be made. Fe is independent of the velocity of the charge and can perform work on the 

charge and change its kinetic energy. Unlike Fe, Fm depends on the charge velocity and is 

normal to it. Fm cannot perform work because its at right angles to the direction of motion of 

the charge (Fm. dl = 0); it does not cause an increase in kinetic energy of the charge. The 

magnitude of Fm is generally small compared to Fe except at high velocities. 

 For a moving charge Q in the presence of both electric and magnetic fields, the total force on 

the charge is given by  

F = Fe + Fm 

 

Or 

 

 

 
This is known as the (Lorentz force equation). It relates mechanical force to electrical force. If 

the mass of the charged particle moving in E and B fields is m 

, by Newton’s second law of motion. 

 

F = m 
d u 

= Q ( E + u × B )  
dt 

 

 

  

  

F = Q (E + u × B) 
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Force on a Current Element 

To determine the force on a current element (I dl) of a current – carrying conductor due to 

the magnetic field (B), we modify eq. (2) using the fact that for convection  current 

 

J = ρv u  

To recall the relationship between current elements: 

 

I dl = K ds = J dv  

Combining eqs. ( 5 – 5 ) and ( 5 – 6 ) yields 

I dl = ρv u dv = d Q u 

  

This shows that an elemental charge (d Q) moving with velocity u (thereby producing 

convection current element d Q u) is equivalent to a conduction current element I dl . Thus, 

the force on current element I dl in a magnetic field B is found from eq. (2) by merely 

replacing Q u by I dl; that is, 

d F = I dl ×  B 

 

If the current I is through a closed path L or circuit, the force on the circuit is given by 

 

 

 

 

Also have surface current elements (K d S ) or a volume current element ( J d v ) 

 

 

Force between Two Current Elements 

 

 

The force between two elements I1 dl1 and I2 dl 2 . According to Biot – Savart’s law , 

both current element produce magnetic fields. So may find the force d ( d F1 ) on element I 1 

dl 1 due to the field d B 2 produced by element I2 dl 2 as shown in figure ( 5 – 1 ) . From eq. ( 

5 – 8 ), 

 
F = ф I dl ×  B 

L 



 
 
ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES                                               DEPT.ECE     

54 
 

d (d F1) = I1 d l1 × d B2 

 

 

 

But from Biot – Savart’s law, 
 

 
Hence 

 

 

   Fig. Force between Two Current Elements 

This equation is essentially the law of force between two current element and is analogous to 

Coulomb’s law, which expresses the force between two stationary charges. From eq. ( 5 – 12 

) , can to obtain the total force F1 on current loop ( 1 ) due to current loop ( 2 ) shown in 

figure ( 5 – 1 ) as 

 
The force F2 on loop ( 2 ) due to the magnetic field B1 from loop ( 1 ) is obtained from above eq. 

by interchanging subscripts 1 and 2 . It can be shown that F2 = - F1;  
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Maxwell's Equations (Time Varying Fields) 

Faraday's Law: 
 

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting 

loop when the magnetic flux linking the loop changed. In terms of fields, we can say that a time 

varying magnetic field produces an electromotive force (emf) which causes a current in a closed 

circuit. The quantitative relation between the induced emf (the voltage that arises from 

conductors moving in a magnetic field or from changing magnetic fields) and the rate of change 

of flux linkage developed based on experimental observation is known as Faraday's law. 
 

Any change in the magnetic environment of a coil of wire will cause a voltage (emf) to be 

"induced" in the coil. No matter how the change is produced, the voltage will be generated. 

The change could be produced by changing the magnetic field strength, moving a magnet 

toward or away from the coil, moving the coil into or out of the magnetic field, rotating the coil 

relative to the magnet, etc. 
 

Faraday's law is a fundamental relationship which comes from Maxwell's equations. It serves as 

a succinct summary of the ways a voltage (or emf) may be generated by a changing magnetic 

environment. The induced emf in a coil is equal to the negative of the rate of change of 

magnetic flux times the number of turns in the coil. It involves the interaction of charge with 

magnetic field. 

When two current carrying conductors are placed next to each other, we notice that each induces 

a force on the other. Each conductor produces a magnetic field around itself (Biot– Savart law) 

and the second experiences a force that is given by the Lorentz force.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mathematically, the induced emf can be written as    

                      Emf =     Volts                            

where  is the flux linkage over the closed path. A non zero   may result due to any of the 

following:  
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(a) time changing flux linkage a stationary closed path. 

(b) relative motion between a steady flux a closed path.  

(c) a combination of the above two cases. 

The negative sign in equation (7) was introduced by Lenz in order to comply with the polarity of 

the induced emf. The negative sign implies that the induced emf will cause a current flow in the 

closed loop in such a direction so as to oppose the change in the linking magnetic flux which 

produces it. (It may be noted that as far as the induced emf is concerned, the closed path forming 

a loop does not necessarily have to be conductive).  

If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic 

flux linking the coil induces an emf in each turn of the coil and total emf is the sum of the 

induced emfs of the individual turns, i.e.,  

Emf =      Volts                                 

By defining the total flux linkage as  

                                         

The emf can be written as  

Emf =                                   

Continuing with equation (3), over a closed contour 'C' we can write 

Emf =                               

where  is the induced electric field on the conductor to sustain the current. 

Further, total flux enclosed by the contour 'C ' is given by  

                                               

Where S is the surface for which 'C' is the contour.  

From (11) and using (12) in (3) we can write 

                         

By applying stokes theorem 

                         

Therefore, we can write  
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which is the Faraday's law in the point form  

We have said that non zero  can be produced in a several ways. One particular case is when a 

time varying flux linking a stationary closed path induces an emf. The emf induced in a 

stationary closed path by a time varying magnetic field is called a transformer emf . 
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MAXWELL’S EQUATIONS (Time varying Fields)  

Introduction: 

In our study of static fields so far, we have observed that static electric fields are produced by 

electric charges, static magnetic fields are produced by charges in motion or by steady current. 

Further, static electric field is a conservative field and has no curl, the static magnetic field is 

continuous and its divergence is zero. The fundamental relationships for static electric fields 

among the field quantities can be summarized as: 

                           (1) 

                           (2) 

For a linear and isotropic medium, 

                               (3) 

Similarly for the magnetostatic case 

                               (4) 

                           (5) 

                                (6)  

It can be seen that for static case, the electric field vectors and  and magnetic field vectors  

and  form separate pairs. 

Maxwell's equations represent one of the most elegant and concise ways to state the 

fundamentals of electricity and magnetism. From them one can develop most of the working 

relationships in the field. Because of their concise statement, they embody a high level of 

mathematical sophistication and are therefore not generally introduced in an introductory 

treatment of the subject, except perhaps as summary relationships. 
 

These basic equations of electricity and magnetism can be used as a starting point for advanced 

courses, but are usually first encountered as unifying equations after the study of electrical and 

magnetic phenomena. 
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Symbols Used 

 

E = Electric field  ρ = charge density  i = electric current 
     

     

B = Magnetic field  ε0 = permittivity  J = current density 
     

     

D = Electric displacement  μ0 = permeability  c = speed of light 
      

H = Magnetic field strength M = Magnetization P = Polarization  
 

 

Integral form in the absence of magnetic or polarizable media:  
 

 

I. Gauss' law for electricity  
 
 
 
 
 

 

 Gauss' law for magnetism 
 
 
 
 
 
 
 
III. Faraday's law of induction  
 
 
 

IV. Ampere's law
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Differential form in the absence of magnetic or polarizable media:  
 

 

I. Gauss' law for electricity 
 
 
 
 

 

 Gauss' law for magnetism  
 
 
 
 

 

III. Faraday's law of induction  
 
 
 
 
 
 
 
 
 

 

IV. Ampere's law  
 
 
 
 
 
 
 
 
 
 

 

Differential form with magnetic and/or polarizable media: 
 

I. Gauss' law for electricity  
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II. Gauss' law for magnetism  
 
 
 
 

 

III. Faraday's law of induction  
 
 
 
 

 

IV. Ampere's law  
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Inconsistency of amperes l
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Solved problems: 

Problem1: 
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Problem2: 
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Problem3: 

 
Problem4: 
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Problem7: 
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UNIT – III 

EM WAVE CHARACTERISTICS 
Contents: 
 

 Wave Equations for Conducting and Perfect Dielectric Media 

 Uniform Plane Waves - Definition, All Relations Between E & H  

 Reflection and Refraction of Plane Waves  

 Normal incidence for both perfect Conductor and perfect Dielectrics 
 Brewster Angle 

 Critical Angle 

 Total Internal Reflection 

 Poynting Vector and Poynting Theorem  
 Illustrative Problems. 
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Wave equations: 

The Maxwell's equations in the differential form are  

                                                   
Let us consider a source free uniform medium having dielectric constant , magnetic 

permeability  and conductivity . The above set of equations can be written as 

               
Using the vector identity , 

                                   
We can write from 2 

                                

Substituting  from 1 

                                         

But in source free( ) medium (eq3) 

                                         
In the same manner for equation eqn 1 

                                         

Since  from eqn 4, we can write 
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These two equations 

                                          

                                           
are known as wave equations. 

 

Uniform plane waves:  

A uniform plane wave is a particular solution of Maxwell's equation assuming electric 

field (and magnetic field) has same magnitude and phase in infinite planes perpendicular to the 

direction of propagation. It may be noted that in the strict sense a uniform plane wave doesn't 

exist in practice as creation of such waves are possible with sources of infinite extent. However, 

at large distances from the source, the wave front or the surface of the constant phase becomes 

almost spherical and a small portion of this large sphere can be considered to plane. The 

characteristics of plane waves are simple and useful for studying many practical scenarios 

          Let us consider a plane wave which has only Ex component and propagating along z . 

Since the plane wave will have no variation along the plane perpendicular to z 

 i.e., xy plane, . The Helmholtz's equation reduces to, 

 

    The solution to this equation can be written as  

 

     are the amplitude constants (can be determined from boundary conditions). 

   In the time domain,  

 

    assuming are real constants. 

    Here, represents the forward traveling wave. The plot of 

for several values of t is shown in the Figure below 
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Figure : Plane wave traveling in the + z direction  

As can be seen from the figure, at successive times, the wave travels in the +z direction.  

If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e. , 

= constant     

Then we see that as t is increased to , z also should increase to so that  

 

Or,  

Or,  

    When ,  

    we write = phase velocity . 

 

    If the medium in which the wave is propagating is free space i.e.,  

    Then  

    Where 'C' is the speed of light. That is plane EM wave travels in free space with the speed of 

light. 

    The wavelength is defined as the distance between two successive maxima (or minima or 

any other reference points).  

i.e.,  

or,  

or,  
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   Substituting ,       

or,    

   Thus wavelength also represents the distance covered in one oscillation of the wave. 

Similarly, represents a plane wave traveling in the -z direction.  

    The associated magnetic field can be found as follows:  

    From (6.4),  

 

 

 

=  

                =  

 where is the intrinsic impedance of the medium. 

 

    When the wave travels in free space  

    is the intrinsic impedance of the free space.  

  In the time domain,  

  

Which represents the magnetic field of the wave traveling in the +z direction.  

For the negative traveling wave,  

 

For the plane waves described, both the E & H fields are perpendicular to the direction of 

propagation, and these waves are called TEM (transverse electromagnetic) waves.  

The E & H field components of a TEM wave is shown in Fig below  
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Figure  : E & H fields of a particular plane wave at time t.  
 

 

 

Solved Problems: 

 

1. The vector amplitude of an electric field associated with a plane wave that propagates in 

the negative z direction in free space is given by m x ya a V
m

 2 3  

              Find the magnetic field strength. 
 
Solution: 

The direction of propagation nβ is –az.  The vector amplitude of the magnetic field is then given 

by 





m

x y z

x y

n
a a a

a a A
m    













 

1
0

2

0

3

1

0

1

377
3 2



 

 

*note 








  120π~377Ω (Appendix D – Table D.1) 

 
2. The phasor electric field expression in a phase is given by  

 

     ( . . )       
x y y z

j x ya a j a e2 5 2.3 0 6 0 8  

      Find the following: 
 

1.  y . 

2. Vector magnetic field, assuming      and . 

3. Frequency and wavelength of this wave. 
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Solution: 
 

1. The general expression for a uniform plane wave propagating in an arbitrary 
 direction is given by  

 

        
m

j re   

  

         where the amplitude vector m , in general, has components in the x, y, and z     

 directions.  Comparing equation 6.3 with the general field equation for the plane 
 wave propagating in an arbitrary direction, we obtain 
 
  β · r = βxx + βyy + βzz 
         = β (cos θxx + cos θyy + cos θzz) 
         = 2.3(-0.6x + 0.8y + 0) 
  
 Hence, a unit vector in the direction of propagation nβ is given by 
     nβ = -0.6ax + 0.8ay.   

Because the electric field  must be perpendicular to the direction of propagation nβ, it must 
satisfy the following relations: 
 

    nβ · 
  = 0 

 

 Therefore, (-0.6ax + 0.8ay) ·   x y y za a j a    2 5 0  

Or  
    -0.6 + 0.8  y = 0 

 Hence,  y  = 0.75.  The electric field is given by  

 

      ( . . )       
x y y z

j x ya a j a e2 5 2.3 0 6 0 8  

 

2. The vector magnetic field 


is given by  

 

        . .

.

    



1 1

377
0 6 08 0

1 0 75 2 5
 n

a a a

j

x y z

      

 
 so that 
 
      

         . ( )
. . x

j
j


   08 2 5

377
4 24 10 6 10

3  
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        y  


   
0 6 2 5

377
318 7 95 10 3

. ( )
. .

j
j  

 

                   z

 



   

0 6 0 75 08

377
331 10 3

. . .
.   

 
 
 The vector magnetic field is then given by 
 

           x x y y z za a a   j x ye 2.3 0 6 08( . . )  

 
 3. The wavelength λ is given by  

 

   





  

2 2

2 3
2 73

.
. m   

 
 and the frequency  

 

   f  



c

GHz


3 10

2 73
011

8

.
.  

 

 
Reflection and Refraction at Plane Interface between Two Media:    
 
Figure 6.7 shows two media with electrical properties 1and 1  in medium 1, and 2  and   2  in 

medium 2.  Here a plane wave incident anglei  on a boundary between the two media will be 

partially transmitted into and partially reflected at the dielectric surface.  The transmitted wave is 

reflected into the second medium, so its direction of propagation is different from the incidence 

wave.  The figure also shows two rays for each the incident, reflected, and transmitted waves.  A 

ray is a line drawn normal to the equiphase surfaces, and the line is along the direction of 

propagation.   
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     Figure 6.7 
 

 

The incident ray 2 travels the distance CB, while on the contrary the reflected ray 1 travels the 

distance AE.  For both AC and BE to be the incident and reflected wave fronts or planes of 

equiphase, the incident wave should take the same time to cover the distance AE.  The reason 

being that the incident and reflected wave rays are located in the same medium, therefore their 

velocities will be equal,  

 

     
CB

V

AE

V1 2
  

 OR 

 

     AB ABi rsin sin   

 

With this being the case then it follows that  

 

      i r   

 

What is the relationship between the angles of incidence i and refraction r ?   

 

It takes the incident ray the equal amount of time to cover distance CB as it takes the refracted 

ray to cover distance AD – 

 

    
CB

V

AD

V1 2
  

 

And the magnitude of the velocity V1 in medium 1 is:  

 

1 

2 

Reflected 

rays 

1 

2 

 2 2,  

 1 1,  

Incident 
rays 

i  

A B 

 t  

 r  

C E 

Reflected 
rays 
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    1

1 1

1
V 

 
 

 

And in medium 2: 

 

    2

2 2

1
V 

 
 

 

Also, 

 

    
CB AB

AD AB

i

i





sin

sin




 

 

Therefore, 

 

   
CB

AD

V

V

i

t

  



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For most dielectrics   2 1    

 

 

Therefore,   
sin

sin

i

t








  



 

2

1
1 2 

  (6.12) 

 

Equation 6.12 is known as Snell’s Law of Refraction. 

 

Behavior of Plane waves at the interface of two media: 

 We have considered the propagation of uniform plane waves in an unbounded 

homogeneous medium. In practice, the wave will propagate in bounded regions where several 

values of will be present. When plane wave travelling in one medium meets a different 

medium, it is partly reflected and partly transmitted. In this section, we consider wave reflection 

and transmission at planar boundary between two media. 
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Fig 6 : Normal Incidence at a plane boundary  

Case1: Let z = 0 plane represent the interface between two media. Medium 1 is characterised by 

and medium 2 is characterized by .Let the subscripts 'i' denotes incident, 

'r' denotes reflected and 't' denotes transmitted field components respectively. 

The incident wave is assumed to be a plane wave polarized along x and travelling in medium 1 

along direction. From equation (6.24) we can write 

..................(1) 

......................(2) 

where and . 

Because of the presence of the second medium at z =0, the incident wave will undergo partial  

reflection and partial transmission.The reflected wave will travel along in medium 1. 

The reflected field components are: 

...............................................(3) 

.........(4) 

The transmitted wave will travel in medium 2 along for which the field components are  

............................................(5) 

............................................(6) 

 where and  

 

In medium 1, 

and  

and in medium 2, 

and  

Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field 

components and noting that incident, reflected and transmitted field components are tangential at 

the boundary, we can write 
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&  

From equation 3to 6 we get, 

................................................................(7) 

..............................................................(8) 

Eliminating Eto ,  

 

or,  

or,  

                    ...............(8) 

is called the reflection coefficient. 

From equation (8), we can write 

 

or,  

........................................(9) 

is called the transmission coefficient. 

We observe that, 

........................................(10) 

The following may be noted 

(i) both and T are dimensionless and may be complex 

(ii)  

Let us now consider specific cases: 

Case I: Normal incidence on a plane conducting boundary  

The medium 1 is perfect dielectric and medium 2 is perfectly conducting . 
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From (9) and (10) 

= -1 

and T =0 

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to the 

medium 1. 

 

& .................................(11) 

Proceeding in the same manner for the magnetic field in region 1, we can show that,  

...................................................................................(12) 

The wave in medium 1 thus becomes a standing wave due to the super position of a forward 

travelling wave and a backward travelling wave. For a given ' t', both and vary 

sinusoidally with distance measured from z = 0. This is shown in figure 6.9.  

 

Figure 7: Generation of standing wave 

Zeroes of E1(z,t) and Maxima of H1(z,t). 

 Maxima of E1(z,t) and zeroes of H1(z,t).  
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Case2: Normal incidence on a plane dielectric boundary   :   If the medium 2 is not a perfect 

conductor (i.e. ) partial reflection will result. There will be a reflected wave in the 

medium 1 and a transmitted wave in the medium 2.Because of the reflected wave, standing wave 

is formed in medium 1.  

From equation (10) and equation (13) we can write  

..................(14) 

Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics ( 

) 

    ..................(15) 

In this case both and become real numbers.  

..................(16) 

From (6.61), we can see that, in medium 1 we have a traveling wave component with amplitude 

TEio and a standing wave component with amplitude 2JEio. The location of the maximum and the 

minimum of the electric and magnetic field components in the medium 1from the interface can 

be found as follows. The electric field in medium 1 can be written as  

..................(17) 

If i.e. >0  

The maximum value of the electric field is  

..................(18) 

and this occurs when   

 



 
 
ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES                                               DEPT.ECE     

86 
 

or   ,   n = 0, 1, 2, 3.......................(19) 

The minimum value of is  

.................(20) 

And this occurs when  

 

or ,  n = 0, 1, 2, 3.............................(21) 

For  i.e. <0 

The maximum value of is which occurs at the zmin locations and the minimum 

value of is which occurs at zmax locations as given by the equations (6.64) and 

(6.66). 

From our discussions so far we observe that can be written as  

 .................(22) 

 

The quantity S is called as the standing wave ratio.  

As the range of S is given by  

From (6.62), we can write the expression for the magnetic field in medium 1 as  

.................(23) 

From (6.68) we find that will be maximum at locations where is minimum and vice 

versa.  

In medium 2, the transmitted wave propagates in the + z direction.  

 

Brewster Angle: 
 Brewster angle is defined as the angle of incidence at which there will be no reflected wave.  It 

occurs when the incident wave is polarized such that the E field is parallel to the plane of 

incidence.   

Brewster Angle – (from Brewster’s Law), the polarizing angle of which (when light is 

incident) the reflected and refracted index is equal to the tangent of the polarizing angle.  In other 

words, the angle of incidence of which there is no reflection. 

From the reflection coefficient expression- 
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    
| | 

2 1

2 1

  

  





cos cos

cos cos

t

t i

i


 

 

It can be seen that there is an angle of incidence at 
| | 0 .  This angle can be obtained when  

    1 2
   cos cosi t  

 

 

Or 

    cos cosi t





2

1

     

 

The angle of incidencei , at which 
| |  0 , is known as the Brewster angle.  The expression for 

this angle in terms of the dielectric properties of media 1 & 2, considering Snell’s Law for the 

special case   1 2   is  

 

 

    
sin

sin

i

t

V

V








  



 

1

2

2

1
1 2 

 

 

This condition is important, because it is usually satisfied by the materials often used in optical 

applications.   

 

Equation 6.19 will take the form –  

 

   i tcos cos





1

2
      

 

Square both sides of equation 6.20 and use Snell’s Law for the special case of   1 2   for 

the following result: 

 

 

   2 1

2
cos i




   2 1 2

2

1cos sint t



  

 

               
1

2

1 2


sin i  

 

The last substitution was based on Snell’s Law of refraction.  Therefore, 

 

    1 2 sin i
1

2






1
2

2
2

2



sin i  
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2

 



2sin i 1

1
2

2
2















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And 

 

   2 2

2 1
sin i



 



      

 

The Brewster angle of incidence is 

 

   sin i


 




2

2 1
      

 

A specific value of θi can be obtained from equation 6.21 -  

 

    1 2 2

2 1

 

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

 
 

Or 

    2 2

2 1

1cos i

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 




1
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

 
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    cos i


 




1

2 1
    (6.23) 

 

From equations 6.22 & 6.23 –  

 

    tan i





2

1
 

 

This specific angle of incidence  i is called the Brewster angle .   

 

    



 1 2

1
tan  

 

Critical angle:  
 

In geometric optics, at a refractive boundary, the smallest angle of incidence at which total 

internal reflection occurs. The critical angle is given by 

 

https://www.its.bldrdoc.gov/fs-1037/dir-017/_2454.htm
https://www.its.bldrdoc.gov/fs-1037/dir-002/_0294.htm
https://www.its.bldrdoc.gov/fs-1037/dir-037/_5510.htm
https://www.its.bldrdoc.gov/fs-1037/dir-037/_5510.htm
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Where Өc is the critical angle, n 1 is the refractive index of the less dense medium, and n 2 is the 

refractive index of the denser medium.  

Angle of incidence: The angle between an incident ray and the normal to a reflecting or 

refracting surface 

 

 

 

 
Total Reflection at Critical Angle of Incidence 
 

In the previous section it was shown that for common dielectrics, the phenomenon of total 

transmission exists only where the electric field is parallel to the plane of incidence known as 

parallel polarization.   

There is a second phenomenon existing for both polarizations: 

 Total reflection occurring at the interface between two dielectric media 

 A wave passing from a medium with a larger dielectric constant to a medium with  

 smaller value of ε 

 

Snell’s Law of refraction shows –  

 

  
sin

sin

i

t










2

1

          or           sin
sin

i
t









2

1

   (6.26) 

 

Therefore, if    1 2 , and t i then a wave incident at an angle i will pass into medium 2 

at a larger anglet .   

 

Definition: 

 c , (critical angle of incidence) is the value of i that makes t = π/2, see Figure  6.13. 

 

Substitute t  = π/2 in equation 6.26 to get –  

 

   sin c





2

1
, or c




 1 2

1
sin  

https://www.its.bldrdoc.gov/fs-1037/dir-031/_4506.htm
https://www.its.bldrdoc.gov/fs-1037/dir-022/_3265.htm
https://www.its.bldrdoc.gov/fs-1037/dir-030/_4433.htm
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Figure 6.13 illustrates the fact that   t i if , 1 2 .  The critical angle  c is defined as the 

value of i at which t = π/2. 

 

Envision a beam of light impinging on an interface between two transparent media where

n ni t .  At normal incidence (i = 0) most of the incoming light is transmitted into the less 

dense medium.  As i  increases, more and more light is reflected back into the dense medium, 

while t  increases.  When t  = 90°, i is defined to be  c  and the transmittance becomes zero.  

For i >  c  all of the light is totally internally reflected, remaining in the incident medium.   

 

Poynting Vector and Power Flow in Electromagnetic Fields: 

Electromagnetic waves can transport energy from one point to another point. The electric and 

magnetic field intensities asscociated with a travelling electromagnetic wave can be related to the 

rate of such energy transfer.  

Let us consider Maxwell's Curl Equations: 

 

Using vector identity 

 

the above curl equations we can write 

 

 
 t  2  

 c  

1  

2  

 1 2  

i  

 t  
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.............................................(1) 

In simple medium where and are constant, we can write 

 

   and     

 

Applying Divergence theorem we can write, 

...........................(2) 

 

The term represents the rate of change of energy stored in the electric 

and magnetic fields and the term represents the power dissipation within the volume. 

Hence right hand side of the equation (6.36) represents the total decrease in power within the 

volume under consideration. 

The left hand side of equation (6.36) can be written as where 

(W/mt2) is called the Poynting vector and it represents the power density vector associated with 

the electromagnetic field. The integration of the Poynting vector over any closed surface gives 

the net power flowing out of the surface. Equation (6.36) is referred to as Poynting theorem and 

it states that the net power flowing out of a given volume is equal to the time rate of decrease in 

the energy stored within the volume minus the conduction losses. 

Poynting vector for the time harmonic case: 

For time harmonic case, the time variation is of the form , and we have seen that 

instantaneous value of a quantity is the real part of the product of a phasor quantity and when 

is used as reference. For example, if we consider the phasor 

 

then we can write the instanteneous field as 

.................................(1) 

when E0 is real. 

Let us consider two instanteneous quantities A and B such that 

..................(2) 
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 where A and B are the phasor quantities. 

i.e,   

 

Therefore, 

 

..............................(3) 

Since A and B are periodic with period , the time average value of the product form AB, 

denoted by can be written as 

 

.....................................(4) 

Further, considering the phasor quantities A and B, we find that 

 

and , where * denotes complex conjugate.  

 

..............................................(5) 

The poynting vector can be expressed as 

...................................(6) 

If we consider a plane electromagnetic wave propagating in +z direction and has only 

component, from (6.42) we can write: 

 

Using (6)  

 

........................................(7) 

where and , for the plane wave under consideration. 
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For a general case, we can write 

.....................(8) 

We can define a complex Poynting vector 

 

and time average of the instantaneous Poynting vector is given by . 

 

Solved Problems: 

1. Calculate the polarization angle (Brewster angle) for an air water  r  81  interface at 

which plane waves pass from the following: 

(a) Air into water. 

(b) Water into air. 

 

SOLUTION 
 

1.  (a)  Air into water: 

     r rand1 21 81    

 

  The Brewster angle is then given by  

    



 1 2

1
tan  = 6.34° 

  Therefore,  

 

      1 81tan  = 83.7° 

 

(b) Water into air: 

    r rand1 281 1   

      Hence, 

     1
1

81
tan = 6.34° 

 

      To relate the Brewster angles in both cases, let us calculate the angle of         

refraction.   
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sin

i

t










2

1

 

       

 Therefore, in case a, 

 

   
sin

sin



 t
 81  
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Therefore, 

   tsin
sin .

.  
837

9
011  

 

Ort  6 34.  , which is the same as the Brewster angle for case b.  Also, the angle of refraction 

in case b is given by Snell’s Law as: 

   
sin

sin







t




81


1

81
 

Therefore, 

 

   tsin
sin .

.  
6 34

1

81

0 99  

Or t  83 7. , which is the Brewster angle for case a.   

 

2. The index of refraction of liquid is 1.9. What is the critical angle for a light ray travelling in 

the liquid toward a flat layer of air? 

Solution 

The critical angle is determined by the following expression (Snell’s law, in which the angle of 

refraction is ):  

 

Here  is the index of refraction of medium 1 (liquid),  is the index of 

refraction of medium 2 (air). We substitute the known values in the above expression and find 

the critical angle 

 

 

  

3. Find the critical angle for total internal reflection for light going from ice (index of refraction 

= 1.31) into air. 

Solution 

The critical angle is defined as the angle of incidence for which the corresponding angle of 

refraction is . Then the Snell’s law takes the following form 

 

Here  is the index of refraction of medium 1 (ice),  is the unknown critical 

angle,  is the angle of refraction (angle in air), and  is the index of refraction 

of medium 2 (air). We substitute these values into above expression and obtain   
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Then 
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UNIT – IV 

Transmission Lines - I: 

Contents: 

 Types 

 Parameters 
 Transmission Line Equations 

 Primary & Secondary Constants 

 Expressions for Characteristics Impedance, Propagation Constant, Phase and 

Group Velocities 
 Infinite Line Concepts 

 Distortion - Condition for Distortion less Transmission and Minimum 

Attenuation  
 Illustrative Problems. 
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Introduction: 

A transmission line is used for the transmission of electrical power from generating substation to 

the various distribution units. It transmits the wave of voltage and current from one end to 

another. The transmission line is made up of a conductor having a uniform cross-section along 

the line. Air act as an insulating or dielectric medium between the conductors. 

 
Fig. Transmission Lines 

 

Types of Transmission Lines 

The different types of transmission lines include the following. 

Open Wire Transmission Line 

It consists pair of parallel conducting wires separated by a uniform distance. The two-wire 

transmission lines are very simple, low cost and easy to maintain over short distances and these 

lines are used up to 100 MHz Another name of an open-wire transmission line is a parallel wire 

transmission line. 

Coaxial Transmission Line 

The two conductors placed coaxially and filled with dielectric materials such as air, gas or solid. 

The frequency increases when losses in the dielectric increases, the dielectric is polyethylene. 

The coaxial cables are used up to 1 GHz. It is a type of wire which carries high-frequency signals 

with low losses and these cables are used in CCTV systems, digital audios, in computer network 

connections, in internet connections, in television cables, etc. 
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Optic Fiber Transmission Line 

The first optical fiber invented by Narender Singh in 1952. It is made-up of silicon oxide or 

silica, which is used to send signals over a long distance with little loss in signal and at the speed 

of light. The optic fiber cables used as light guides, imaging tools, lasers for surgeries, used for 

data transmission and also used in a wide variety of industries and applications. 

Microstrip Transmission Lines 

The microstrip transmission line is a Transverse Electromagnetic (TEM) transmission line 

invented by Robert Barrett in 1950. 

Wave Guides 

Waveguides are used to transmit electromagnetic energy from one place to another place and 

they are usually operating in dominant mode. The various passive components such as filter, 

coupler, divider, horn, antennas, tee junction, etc. Waveguides are used in scientific instruments 

to measure optical, acoustic ad elastic properties of materials and objects. There are two types of 

waveguides are Metal waveguides and dielectric waveguides. The waveguides are used in optical 

fiber communication, microwave ovens, space crafts, etc. 

Applications 

The applications of transmission line are 

 Power transmission line 

 Telephone lines 

 Printed circuit board 

 Cables 

 Connectors (PCI, USB) 

 

Parameters of transmission line (Primary Constants): 

The performance of transmission line depends on the parameters of the line. The transmission 

line has mainly four parameters, resistance, inductance, capacitance and shunt conductance. 

These parameters are uniformly distributed along the line. Hence, it is also called the distributed 

parameter of the transmission line. 

https://www.elprocus.com/basic-elements-of-fiber-optic-communication-system-and-its-working/
https://www.elprocus.com/major-electronic-components/
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The inductance and resistance form series impedance whereas the capacitance and conductance 

form the shunt admittance. Some critical parameters of transmission line are explained below in 

detail 

Line inductance – The current flow in the transmission line induces the magnetic flux. When 

the current in the transmission line changes, the magnetic flux also varies due to which emf 

induces in the circuit. The magnitude of inducing emf depends on the rate of change of flux. Emf 

produces in the transmission line resist the flow of current in the conductor, and this parameter is 

known as the inductance of the line. 

Line capacitance – In the transmission lines, air acts as a dielectric medium. This dielectric 

medium constitutes the capacitor between the conductors, which store the electrical energy, or 

increase the capacitance of the line. The capacitance of the conductor is defined as the present of 

charge per unit of potential difference. 

Capacitance is negligible in short transmission lines whereas in long transmission; it is the most 

important parameter. It affects the efficiency, voltage regulation, power factor and stability of the 

system. 

Shunt conductance – Air act as a dielectric medium between the conductors. When the 

alternating voltage applies in a conductor, some current flow in the dielectric medium because of 

dielectric imperfections. Such current is called leakage current. Leakage current depends on the 

atmospheric condition and pollution like moisture and surface deposits. 

Shunt conductance is defined as the flow of leakage current between the conductors. It is 

distributed uniformly along the whole length of the line. The symbol Y represented it, and it is 

measured in Siemens. 
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Primary & Secondary Constants: 

 The primary line constants are the resistance, inductance, conductance, and capacitance per unit 

length of the transmission line. 

However, the term “secondary line constants” is not commonly used. It is normally known as 

“quaternary parameters” or “quaternary constants” used in telecommunication line analysis. 

These parameters extend the analysis of transmission lines beyond the primary parameters by 

including additional effects, such as radiation and shunt capacitance. Quaternary parameters are 

also used to model the behavior of transmission lines at higher frequencies. 

Propagation Constant Definition: 

Electromagnetic waves propagate in a sinusoidal fashion. The measure of the change in 

amplitude and phase per unit distance is called the propagation constant. Denoted by the 

Greek letter 𝜸. The terminologies like Transmission function, Transmission constant, 

Transmission parameter, Propagation coefficient, and Propagation parameter are synonymous 

with this quantity. Sometimes 𝜶 and 𝜷 are collectively referred to as Propagation or 

Transmission parameters. 

The propagation constant can be mathematically expressed as: 

γ = α + jβ 

Where: 

α (alpha) represents the attenuation constant, which measures the rate of amplitude decay of the 

signal as it travels through the medium. It is a real number and is usually measured in Nepers per 

unit length or decibels per unit length. 

β (beta) represents the phase constant, which determines the phase shift experienced by the 

signal as it propagates through the medium. It is an imaginary number and is usually measured in 

radians per unit length. 

The magnitude of the propagation constant (γ) gives the overall rate of signal decay, while the 

argument or phase angle of the propagation constant (arg(γ)) gives the phase shift experienced by 

the signal. 

Propagation Constant of a Transmission Line: 

The propagation constant for any conducting lines (like copper lines) can be calculated by 

relating the primary line parameters. 

 

Where, Z = R + iωL is the series impedance of line per unit length. 

Y = G + iωC is the shunt admittance of line per unit length. 

https://www.daenotes.com/electronics/communication-system/transmission-line
https://byjus.com/physics/electrical-conductors/
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Characteristic Impedance (Zo) 

As we already discussed that primary constants are very significant in transmission lines, they 

make characteristic impedance (Zo) a very significant parameter as well, because characteristic 

impedance (Zo) involves all four of the primary constants in its expression. 

What is Characteristic Impedance? 

Characteristic impedance can be defined as the ratio of amplitude of voltage to the amplitude of 

current of a unidirectional wave travelling from source to load along a uniform transmission line 

in the absence of reflections. 

It may also be defined as a square root of the ratio of series impedance of a line to its shunt 

admittance. 

 

Where, 

Z = R + jwL (series impedance per unit length per phase) 

Y = G + jwC (shunt admittance per unit length per phase) 

R, L, G and C are the primary constants of a transmission line, and the above expression 

confirms that characteristics of a transmission line are described by primary line constants. 

Transmission Line Equations 

Let us take the equivalent circuit of the transmission line, for this we are going to take the 

simplest form of transmission line which is two wirelines. These two wirelines are made up of 

two conductors separated by a dielectric medium usually air medium, which is shown in the 

below figure 

If we pass a current (I) through the conductor-1, will find that there is a magnetic field around 

the current-carrying wire of a conductor-1 and the magnetic field can be illustrated using series 

inductor due to the current flow in the conductor-1, there should be a voltage drop across the 

conductor-1, which can be illustrated by a series of resistance and inductor. The setup of the two-

wireline conductor can be made to a capacitor. The capacitor in the figure will always be loosy to 

illustrate that we have added conductor G. The total setup i.e, series resistance an inductor, 

parallel capacitor, and conductor make up an equivalent circuit of a transmission line. 
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Fig.equivalent_circuit_of_a_transmission_line_1 

The inductor and resistance put together in the above figure can be called as series impedance, 

which is expressed as 

Z = R+jωL 

The parallel combination of capacitance and conductor n the above figure can be expressed as 

Y = G+jωc 

 

Where l – length 

Is – Sending end current 

Vs – Sending end voltage 

dx – element length 

x – a distance of dx from sending end 
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At a point, ‘p’ take current(I) and voltage(v) and at a point, ‘Q’ take I+dV and V+dV 

The change in voltage for the length PQ is the 

V-(V + dV) = (R + jωL) dx * I 

V-V-dv = (R + jωL) dx * I 

-dv/dx = (R + jωL) * I ………………. eq(1) 

I-(I + dI) = (G + jωc)dx * V 

I – I+dI = (G + jωc)dx * V 

-dI/dx = (G + jωc) * V … ……………. eq(2) 

Differentiating eq(1) and (2) with respect to dx will get 

-d2v/dx2 = (R + jωL) * dI/dx ………………. eq(3) 

-d2I/dx2 = (G + jωc) * dV/dx … ……………. eq(4) 

Substituting eq(1) and (2) in eq(3) and (4) will get 

-d2v/dx2 = (R + jωL) (G + jωc) V ………………. eq(5) 

-d2I/dx2 = (G + jωc) (R + jωL) I … ……………. eq(6) 

Let P2 = (R + jωL) (G + jωc) … ……………. eq(7) 
Where P – propagation constant 

Substitute d/dx = P in eq(6) and (7) 

-d2v/dx2 = P2V ………………. eq(8) 

-d2I/dx2 = P2I … ……………. eq(9) 
General solution is 

V = Aepx + Be-px … ……………. eq(10) 

I = Cepx + De-px … ……………. eq(11) 
Where A, B C and D are constants 

Differentiating eq(10) and (11) with respect to ‘x’ will get 

-dv/dx = P (Aepx – Be-px ) ………………. eq(12) 

-dI/dx = P (Cepx – De-px) … ……………. eq(13) 

Substitute eq(1) and (2) in eq(12) and (13) will get 

-(R + jωL) * I = P ( Aepx + Be-px ) ………………. eq(14) 

-( G + jωc) * V = P (Cepx + De-px ) ………………. eq(15) 

Substitute ‘p’ value in eq(14) and (15) will get 

I = -p/ R + jωL * (Aepx + Be-px) 

  = √G + jωc / R + jωL * (Aepx + Be-px) ………………. eq(16) 

V = -p/ G + jωc * (Cepx + De-px ) 

= √R + jωL / G + jωc * (Cepx + De-px ) ………………. eq(17) 

Let Z0= √R + jωL / G + jωc 

Where Z0is the characteristic impedenc 
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Substitute boundary conditions x=0, V=VS and I=IS in eq(16) and (17) will get 

IS = A+B ………………. eq(18) 

VS = C+D ………………. eq(19) 

ISZ0= -A+B ………………. eq(20) 

VS /Z0 = -C+D ………………. eq(21) 

From (20) will get A and B values 

A = VS -IS Z0 

B =VS +IS Z0 

From eq(21) will get C and D values 

C = (IS – VS /Z0) /2 

D = (IS + VS /Z0) /2 

Substitute A, B, C and D values in eq(10) and (11) 

V= (VS -IS Z0) epx + (VS +IS Z0)e-px 

= VS (epx +e-px/2) –IS Z¬0(epx -e-px/2) 

= VS coshx – IS Z0 sinhx 
Similarly 

I= (IS -VS Z0) epx + (VS /Z0+IS / 2)e-px 

=IS (epx+e-px/2) –VS /Z0 (epx -e-px/2) 

=IS coshx – VS /Z0 sinhx 
Thus V = VS coshx – IS Z0 sinhx 

I = IS coshx – VS /Z0 sinhx 

Equation of transmission line in terms of sending end parameters are derived 

Phase and Group Velocities: 

Phase velocity is the speed at which a point of constant phase moves through a medium. In 

simple terms, it’s like tracing the path of a ruffling wave crest or trough marking a constant 

phase in the wave. 

In physics, phase velocity can be calculated by using the simple formula: 

 
Where: 

 ω indicates phase velocity 

  vp is the angular frequency of the wave 

 k is the wave number 

It's worth mentioning that phase velocity depends on the medium the wave passes through. In 

some media, the phase velocity might change, leading to phenomena such as refraction. 
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Group Velocity 

Group velocity is defined as the derivative of the wave's angular frequency with respect to its 

wave number. It can be mathematically expressed as: 

 

Relation Between Group Velocity and Phase Velocity 

The Group Velocity and Phase Velocity relation can be mathematically written as- 

 

Where, 

 Vg is the group velocity. 

 Vp is the phase velocity. 

 k is the angular wavenumber. 

The group velocity is directly proportional to phase velocity. This means- 

 When group velocity increases, proportionately phase velocity will also increase. 

 When phase velocity increases, proportionately group velocity will also increase. 

For the amplitude of wave packet let- 

 ω is the angular velocity given by ω=2πf 

 k is the angular wave number given by 

 

 t is time 

 x be the position 

 Vp phase velocity 

 Vg be the group velocity 

 

https://byjus.com/physics/velocity/
https://byjus.com/physics/wave-number/
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The phase velocity of a wave is given by the following equation: 

 

The above equation signifies the relationship between the phase velocity and the group velocity.  

 

Infinite Line Concepts: 

A finite line is a line having a finite length on the line. It is a line, which is terminated, in 

its characteristic impedance (ZR=Z0), so the input impedance of the finite line is equal to the 

characteristic impedance (Zs=Z0). 

An infinite line is a line in which the length of the transmission line is infinite. A finite 

line, which is terminated in its characteristic impedance, is termed as infinite line. So for an 

infinite line, the input impedance is equivalent to the characteristic impedance. 
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Distortion - Condition for Distortion less Transmission and Minimum 

Attenuation: 

It is desirable, however to know the condition on the line parameters that allows propagation 

without distortion. The line having parameters satisfy this condition is termed as a distortion less 

line. 

The condition for a distortion less line was first investigated by Oliver Heaviside. Distortion 

less condition can help in designing new lines or modifying old ones to minimize distortion. 

A line, which has neither frequency distortion nor phase distortion is called a distortion less line.  

Condition for a distortion less line 

The condition for a distortion less line is RC=LG. Also, 

a) The attenuation constant _ should be made independent of frequency. α = RG 

b) The phase constant _ should be made dependent of frequency. β = ω LC 

c) The velocity of propagation is independent of frequency. 

V=1 / LC 

For the telephone cable to be distortion less line, the inductance value should be increased 

by placing lumped inductors along the line. 

For a perfect line, the resistance and the leakage conductance value were neglected. The 

conditions for a perfect line are R=G=0. Smooth line is one in which the load is terminated by its 

characteristic impedance and no reflections occur in such a line. It is also called as flat line. 

The distortion Less Iine 
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If a line is to have neither frequency nor delay distortion, then attenuation constant and 

velocity of propagation cannot be function of frequency. 

Then the phase constant be a direct function of frequency 

 

The above equation shows that if the the term under the second radical be reduced to equal 

(RG + ω2LC)2 

Then the required condition for ß is obtained. Expanding the term under the internal radical 

and forcing the equality gives 

R2G2- 2 ω2LCRG+  ω4L2C2+  ω2L2G2+ 2 ω2LCRG+  ω2CR2 = (RG+ ω2LC)2 

This reduces to 

2 ω2LCRG+  ω2L2G2+  ω2CR2=0 

(LG-CR)2=0 

Therefore, the condition that will make phase constant a direct form is 

LG = CR 

A hypothetical line might be built to fulfill this condition. The line would then have a value of ß 

obtained by use of the above equation. 

Already we know that the formula for the phase constant 

β =  ωLC 

Then the velocity of propagation will be v = 1/ LC 

This is the same for the all frequencies, thus eliminating the delay distortion. 

May be made independent of frequency if the term under the internal radical is forced to reduce 

to (RG +ω LC)2 

Analysis shows that the condition for the distortion less line LG = CR , will produce the desired 

result, so that it is possible to make attenuation constant and velocity independent of frequency 

simultaneously. Applying the condition LG= RC to the expression for the attenuation 

gives α = RG 

This is the independent of frequency, thus eliminating frequency distortion on a line. To 

achieve 

LG = CR 

Require a very large value of L, since G is small. If G is intentionally increased, attenuation are 

increased, resulting in poor line efficiency. 
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To reduce R raises the size and cost of the conductors above economic limits, so that the 

hypothetical results cannot be achieved. 

Propagation constant is as the natural logarithm of the ratio of the sending end current or voltage 

to the receiving end current or voltage of the line. It gives the manner in the wave is propagated 

along a line and specifies the variation of voltage and current in the line as a function of distance. 

Propagation constant is a complex quantity and is expressed as γ= α + j β. 

The real part is called the attenuation constant, whereas the imaginary part of propagation 

constant is called the phase constant. 
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UNIT-V 

Transmission Lines - II: 

Contents: 
 SC and OC Lines 

 Input Impedance Relations 
 Reflection Coefficient 

 VSWR 

 Smith Chart - Configuration and Applications 

 Illustrative Problems.  
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Input Impedance Relations 

 The input impedance of a transmission line is the impedance seen by any signal 

entering it. It is caused by the physical dimensions of the transmission line and its 

downstream circuit elements. 

 If a transmission line is ideal, there is no attenuation to the signal amplitudes and the 

propagation constant turns out to be purely imaginary.  

 When the transmission line length is infinite, the input impedance is equal to the 

characteristic impedance. 

Calculating the Input Impedance 

Consider a lossless, high-frequency transmission line where the voltage and currents are given by 

equations 1 and 2, with the input impedance, characteristic impedance, and load impedance as 

Zin, Z0, and ZL, respectively.  

 

As the transmission line is ideal, there is no attenuation to the signal amplitudes and the 

propagation constant turns out to be purely imaginary. Let’s define the output terminals with axis 

point z=0 and input terminals z=-L. Our objective is to find the impedance of the circuit when 

looking from Z=-L:  

 

The input impedance is the ratio of input voltage to the input current and is given by equation 3. 

By substituting equation 5 into equation 4, we can obtain the input impedance, as given in 

equation 6: 



 
 
ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES                                               DEPT.ECE     

115 
 

 

From equation 6, we can conclude that the input impedance of the transmission line depends on 

the load impedance, characteristic impedance, length of the transmission line, and the phase 

constant of the signals propagating through it.  

It is already a known fact that the characteristic impedance Z0 is dependent on the distributed 

parameters of the transmission line, such as resistance, inductance, capacitance, and conductance 

(as given by equation 7), which are usually defined per unit length. Whenever any change is 

made in the circuit, the input impedance changes. 

 

The relationship between the characteristic impedance and input impedance can be deduced for 

certain transmission lines. In the derivation of the input impedance equation, we have considered 

the finite length of the transmission line. When the transmission line length is infinite, then the 

input impedance of the transmission line is equal to the characteristic impedance. Whenever the 

transmission line of finite length is terminated by a load impedance that is equal to the 

characteristic impedance, there is no reflection of signals (according to equation 7). In this case, 

the input impedance equals characteristic impedance.  

OPEN AND SHORT-CIRCUITED LINES 
  

As limited cases it is convenient to consider lines terminated in open circuit or short circuit, 

that is with ZR = ∞or ZR =0.  

First, let us consider the question at hand: What is the input impedance when the transmission 

line is open- or short-circuited? 

https://resources.system-analysis.cadence.com/blog/msa2021-the-effective-permittivity-of-a-transmission-line-in-a-microstrip
https://resources.system-analysis.cadence.com/signal-integrity/msa2021-transmission-line-propagation-delay-characteristic-impedance-and-dielectric-material
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And for the short circuit case ZR =0., so that 

  

Zs = Z0 tanh γl 

  

Before the open circuit case is considered, the input impedance should be 

written. The input impedance of the open circuited line of length l, with ZR = ∞, is 

  

Zoc = Z0 coth γl 

  

By multiplying the above two equations it can be seen that 

  

Z0 = ZocZsc 

  

This is the same result as was obtained for a lumped network. The above equation 

supplies a very valuable means of experimentally determining the value of z0 of a 

line. 

  

Also from the same two equations 

 

Use of this equation in experimental work requires the determination of the 

hyperbolic tangent of a complex angle. If 

Reflection coefficient: 
A reflection coefficient, sometimes called reflection parameter, defines how much energy is 

reflected from the load to the source of the RF systems. A reflection coefficient is also known as 

s11 parameter. By definition, a reflected coefficient is a ration of the reflected wave and the 

incident wave of the electric field strength. In the literature it is presented with the capital Greek 

letter gamma (Γ). 

The mismatch of a load ZL to a source Z0 results in a reflection coefficient of: 

Γ=(ZL-Z0)/(ZL+Z0) 
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Note that the load can be a complex (real and imaginary) impedance. If you can't remember in 

which order the numerator is subtracted (did we just say "ZL-Z0" or Z0-ZL"?), you can always 

figure it out by remembering that a short circuit (ZL=0) is on the left side of the Smith 

chart (angle = -180 degrees) which means Γ=-1 in this case, which means that the minus sign 

belongs in front of Z0. 

 

The magnitude of the reflection coefficient is given by: 

ρ=mag(Γ) 

For cases where ZL is a real number, 

ρ=abs((ZL-Z0)/(ZL+Z0)) 

Note that "abs" means "absolute value" here. VSWR can be calculated from the magnitude of the 

reflection coefficient: 

VSWR=(1+ρ)/(1-ρ) 

For cases where ZL is real, with a little algebra you'll see there are two cases for VSWR, 

calculated from load impedance: 

For ZL<Z0: VSWR=Z0/ZL 

For ZL>Z0: VSWR=ZL/Z0 

 

VSWR: 
VSWR is an abbreviation for Voltage Standing Wave Ratio or sometimes in literature just SWR 

(Standing Wave Ratio). The value of VSWR presents the power reflected from the load to the 

source. It is often used to describe how much power is lost from the source (usually a High 

Frequency Amplifier) through a transmission line (usually a coaxial cable) to the load (usually an 

antenna). 

How to express VSWR using voltage? 

By the definition, VSWR is the ratio of the highest voltage (the maximum amplitude of the 

standing wave) to the lowest voltage (the minimum amplitude of the standing wave) anywhere 

between source and load. 

VSWR = |V(max)| / |V(min)| 

V(max) = the maximum amplitude of the standing wave 

Vmin) = the minimum amplitude of the standing wave 

What is the ideal value of a VSWR? 

The value of an ideal VSWR is 1:1 or shortly expressed as 1. In this case the reflected power 

from the load to the source is zero. 

How to express VSWR using an impedance? 

By the definition, VSWR is the ratio of the load impedance and source impedance. 

https://www.microwaves101.com/encyclopedias/smith-chart-basics
https://www.microwaves101.com/encyclopedias/smith-chart-basics
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ZL = the load impedance 

Zo = the source impedance 

How to express a VSWR using reflection and forward power? 

By the definition VSWR is equal to 

VSWR = 1 + √(Pr/Pf) / 1 – √(Pr/Pf) 

where: 

Pr = Reflected power 

Pf = Forward power 
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Smith Chart: 

The Smith Chart has been in use since the 1930s as a method to solve various RF design 

problems - notably impedance matching with series and shunt components - and it provides a 

convenient way to find these solutions without the use of a calculator. In order to understand the 

construction of the chart, you'll need to understand high school algebra and the basics of 

complex numbers, as well as have a basic understanding of impedance in electronic circuits. That 

said, even if you don't fully understand the derivation below, you can still use the chart to help 

you with your own design. By taking the standard reflection coefficient formula and 

manipulating it so that it provides us with the equations for circles of various radii, we'll be able 

to construct the basic Smith Chart. That's all the Smith Chart really is: a collection of circles, 

each one centered in a different place in (or outside) the plot, and each one representing 

either constant resistance or constant reactance  

Deriving the Smith Chart 

Once we get past the derivation, there will be a few simplified images showing how those 

equations can be used and combined to get the final product. Let's get started by writing the 

equation for the reflection coefficient of a load impedance, given a source impedance:  

 

The reflection coefficient is just the ratio of the complex amplitude of a reflected wave to the 

amplitude of the incident wave. This is the main equation we'll be using, but there will be some 

quick transformations to it. First, we'll want to simplify it a little by normalizing the equation 

with respect to Zload, dividing each term on the right side: 

 

      

At this point, recall that Zo, being an impedance of complex value, can be represented in the 

form R + jX. Since the reflection coefficient (which is currently in polar form) can also be 

represented in rectangular coordinates (we'll use A + jB for it), the above formula can be 

transformed into this: 

https://www.allaboutcircuits.com/news/zeroing-in-on-wi-fi-7-marvell-releases-first-5nm-multi-gb-phy-platform/
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Great! At this point we've got the equation in the form we need to start constructing the Smith 

Chart. The next step - solving for the real and imaginary parts of the equation - is probably the 

most difficult part of the entire derivation, and even then you only need to understand the 

concept of complex conjugates to do it. Let's go ahead and split it into real and imaginary 

components, first by multiplying by the complex conjugate (it helps if you separate the existing 

real and imaginary parts using brackets as shown below): 

 

At this point we can separate the real and imaginary components. After that, there will be two 

final simplifications to do before we'll have the equations to draw the Smith Chart. Here are the 

separated real and imaginary parts (we'll call them Equations 1 and 2): 

 

Finally, you will want to do just a little more algebra (tedious, I know). Solving the real 

component, A, for X2, you will get Equation 3: 

 

You can substitute this into Equation 2 to get the first of our two final equations, which allows us 

to determine the circles of constant resistance (Equation 4):  
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Just like the previous result, this is a circle with radius 1/X but this time there are two sets of 

circles (more on that in a bit), with centers at (1,1/X)These are circles (they appear as arcs on the 

diagram) of constant reactance. Now you should see how the standard Smith Chart is drawn; it 

consists of constant resistance circles graphed together with the constant reactance arcs. Below 

you'll find some simplified images of both equations graphed separately and combined. But first, 

let's talk about how to interpret the Smith Chart and its physical relevance. 

There is quite a bit of information to obtain from analyzing the equations we've derived. Here are 

just a few things of note: 

 At infinite R and X, both types of circles converge to the same location (typically shown 

on a Smith Chart at the far right or far left side of the diagram). This is at the point (1, 0).  

 Setting R = 0 will result in a circle centered at (0, 0) on your chart with a radius of 1, 

which is the "boundary" of the chart. 

 Approaching X = 0 results in an infinite radius; this is represented by a line crossing the 

center of the chart. How do we interpret this? This is often called the real axis. In terms 

of reactances, lines above the real axis in the chart (the positive arcs from the second 

derived equation) represent inductive reactances, while those below (negative arcs) 

represent capacitive reactances. 
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 What happens if R < 0? The standard Smith Chart doesn't provide much detail about this, 

but situations with R lying outside the boundary suggest oscillation in any would-be 

circuit (which is pretty handy to know). 

 Based on the knowledge we now have on resistance and reactance on the chart, we know 

that every point represents a series combination of resistance and reactance (R + jX). 

This'll help us when we want to do some plotting 

Constant Resistance Circles: 

 

Constant Reactance Arcs: 
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Smith Chart:

 

Applications of Smith Charts: 

Smith charts find applications in all areas of RF Engineering. Some of the most popular 

application includes; 

 Impedance calculations on any transmission line, on any load. 

 Admittance calculations on any transmission line, on any load. 

 Calculation of the length of a short-circuited piece of transmission line to provide a 

required capacitive or inductive reactance. 

 Impedance matching. 
 Determining VSWR among others. 
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